Back to the Future,大模型时代 AI 产品的设计与应用

在大模型时代下,AI产品要怎么做?AI应用需要什么样的产品经理?做好AI产品需要具备哪些能力以及准备?本文从八个维度的重点内容展开,希望能带给你一些启发。

大模型时代的产品要怎么做?AI应用需要什么样的产品经理。

今天可能没有多少创业机会了,但还有很多做生意的好机会。时代在呼唤更多的全栈技术全栈产品,属于个体开发者的好时代终于又回来了。

本文内容,重点关注以下问题:

  1. AI 产品的几个阶段
  2. 数据不是壁垒,结合数据提供差异化体验是壁垒
  3. 做 AI 产品要沉淀什么数据?
  4. 怎么保证现在做应用的投入不是无用功?
  5. Perplexity 的产品设计能力
  6. Adobe 取消收购 Figma 是人机交互方式发生的变化
  7. AI 的能力什么时候会发生跳跃性变革
  8. 产品经理需要 Back to the Future

一、AI 产品的几个阶段:AIGC → Copilot → Insight → Agent(自动化)

通过搭一个乞丐版产品理解用户意图,然后把过去几年客户的最佳实践和成功手册、交付案例、客服知识库……给到AI训练,看能否给到用户运营方案的建议。

总结下来大概是这 6 个能力:理解用户意图、提供用户运营方案建议、生成营销创意、自动化执行、自动化监督、自动化归因。

二、数据不是壁垒,把数据作为 context 喂给大模型,让大模型更懂你、提供差异化体验是壁垒

最开始构建 AI 产品的时候是从用户视角出发,提供解决具体问题的场景功能;

其次是能够看到用户在各种各样场景下沉淀的数据,比如看过的视频、文章、问过的问题,这些都是 LLM 不会有的用户的私有数据。

从过去的经验看,数据肯定不是壁垒,但有了数据后,把它作为 context 传给LLM,让这个 LLM 更懂你,这个差异化体验是壁垒。

比如,让 LLM 帮你起个标题是在编,但把商品信息一起给到 LLM,效果就不一样了。

所有不甘于只做 AI 工具的应用,都需要考虑数据沉淀下来的 AI 资产,让产品能够基于资产,更个性化地服务用户。

三 、做 AI 产品要沉淀什么数据?

需要沉淀的数据不是什么交易额,而是用户在解决某个场景问题在最近某段时间(如一个月内)有多少最佳实践的问答对,比如在小红书上怎么设置店铺的优惠券 —— 需要足够多的最佳实践整理成的问答对。

所以最终我可能不是一个卖软件系统的公司,可能是一个智能运营系统的运营商,通过无数最佳实践和最佳实践的总结,去不断录入、运营这个系统,让它变得越来越智能。

大厂的数据很多,但不是真的强。很多数据不是结构化的,并不能直接拿来给大模型用,那么,今天做 AI 产品的问题是,怎么通过你的产品设计,让用户生产模型能用的数据?怎样依托数据的循环、和独有数据的积累完成产品设计?

一是通用大模型,用户的使用数据对通用大模型来说目前没有太大的提升,还是通用大模型自己的能力;这部分主要用来理解用户意图,满足60分的基础就可以。

二是行业领域通识,在这层做微调(投喂),可以让这个 AI 产品在特定行业领域里理解用户意图、对话与交互的能力会更强;

三是加入对用户场景的业务理解(比如写prompt、界面优化)。

什么是B端产品经理?和C端产品经理有什么区别?

B端产品经理中的B是Business,商业的意思,B端产品经理首先就要理解这个职位的重要性,要设计出更适合这个项目需求的产品方案,B最终产品经理在日常工作中…

查看详情 >

在现阶段,做 AI 应用就主要在二和三不断优化。

四、怎么保证现在对做应用的投入不是无用功?

1. ToB 应用的视角

不要去搞独立的东西,比如电商客服的应用、写文案的应用,独立的东西大模型很可能最后会把它覆盖了。

B端场景的优势在于能交付一个工作流并给到用户结果,有闭环的、活的、每天都在发生的数据。

需要对用户现在要解决的工作流程的理解,比如用户要造一把椅子,他是怎么搞的?他要去运营消费者,他是怎么搞的?要对他内部作业流程有理解。

这么多年 toB 领域的皇冠是谁?做一些ERP的!这不就是企业的工作流吗?

所以飞书、钉钉和企业微信,大家最后的组织能力谁强?

强的肯定是对他服务的客户组织协作流和工作流的理解。

所以第一拼的是你对作业流程的理解,如果你能把这个理解通过AI交付一个工作过程,然后这个工作过程还是能直接给你结果的,你这个是个好产品。

如果你只是给人家生成某个东西,你最后就不是一个好产品。

2. ToC 应用的视角

ToC 产品更多是关注单点的价值创造和体验的优化。

现在的模型厂商其实特别像芯片厂商,AI 应用公司就像消费电子公司。

我们思考组织问题的时候,会想我应该花大钱去招一个算法工程师、还是招一个很会做增长的同学?

后来我们想到这个问题的背后,是你到底要学什么公司?我们不应该学高通、不应该学英伟达,我们应该学小米、学大疆、学苹果。

本质上 toC 的公司更像是消费电子公司,要关注供应链,上半年买不到GPT-4,因为就 OpenAI 不卖,或者限量卖的,但是微软卖,微软说你充20万我就卖给你,这个就像典型的供应链管理问题。

我们要关注定价,OpenAI的成本,LLM 降价了,开完发布会降到三分之一了,我们是跟着变吗?好像不对,你应该是价格不变,但是给更多东西。

新一代的小米手机,高通变牛逼了它还是应该卖这样的价位。

我们要关注品牌,让大家想到应用的时候就想到你。

要关注渠道,关注毛利率,有规模化了之后,可以维持好毛利率,才能有钱去投研发、投广告,让更多人用起来,形成正向循环。

是不是非得有 LLM 能力才能做出超级应用来?换个问法,有了LLM能力就能做出超级应用吗?也不是。超级应用本来就很难,消费电子也是全方位竞争,不如关注我们能关注的事。

苹果的 Day1 也没有造芯片,它先用的Intel,然后花了20年的时间才把那个芯片换成自己的MC芯片。所以消费电子是一个全方位的竞争,不要觉得 LLM 牛逼才是一切。

私有数据很重要,给LLM足够多的上下文特别重要,浏览器插件是个好形态,看用户过去说过什么东西、查过什么东西、存了什么东西……(当然即便这样可能还是不能赢)。

五、Perplexity 的产品设计能力

Perplexity 底层搜索用的是 Bing 的API,结果处理用的是 GPT 的API,是一个纯粹的套壳。他的用户是Google的万分之一,但是在这个品类里他会经常被提起,这证明了他作为产品设计维度上是有一定想象空间的。

一、它的搜索框是一个text area,它是多行的,而Google是单行的。

背后的暗示是,Google搜索可能需要用户输入一个短语、或者简短的一句话;而perplexity是可以输入很长一段话,它帮你拆解这件事,帮你做好检索,它更符合人类对于问题的想象。

二、它很AI Native,没什么负担。

Google搜索出来的结果,会带有大量的链接,即使有生成式的答案,链接永远在主要的位置。Perplexity的设计是先出很长一段的答案,链接的形态是一个个附注小标,答案来自这些地方,你可以自行去溯源。

从产品设计的角度,它没有传统搜索竞价排名的负担、或者卖广告的负担,他可以重新定义自己的产品设计,背后的商业逻辑是它的搜索可以直接面向用户收费。

六、Adobe 取消收购 Figma 是人机交互方式发生的变化

四五年前出现了一个新公司 Figma,专门只面对用户界面设计,他做了几件事:

  • 用户界面设计工具比Photoshop好用;
  • 开放了生态,专门有人去做icon的插件或者某种风格的插件,所以变得极其简单,还有人专门做切图后和前端代码的结合(有很多现成的东西你去拼一拼就能搞出来);
  • 开放了多账户,程序员和设计师可以在这里协作(以前是设计了一张图 → 传图 → 拿图片切图,现在可以直接在Figma协作)。

所以 Adobe 慌了。整个 IT 行业越来越重视用户界面,越来越重视用户体验,Figma 占据了它的 30%,而且可能会越来越多,所以两年前,当 Figma 只有 1 亿美元收入的时候,Adobe 拿了 200 亿美元要买它。

这是一个在增长的市场,而且功能占 Adobe 很大比例,这个收购价格在商业上是合理的。

但两周前 Adobe 反悔了,说监管不同意,不买了,可以交10亿美金的罚款。

为什么呢?

体验设计最主要的几个环节,一是有想法,有人给你设计风格;二是有想法,设计完风格后需要不断加功能,这时候需要做重复性的界面设计;三是产品成熟后不需要什么体验设计,顶多在某个功能里加个小icon。

今天,全球互联网的投资人不怎么投钱了,不怎么搞增长了,大家都说我不在快速增长期,在相对成熟期,整个行业的需求没这么多了。

第二个原因是,AI 出现后大家发现直接聊天给指令就能生成结果了,可能未来界面交互就不太需要了。核心还是人机交互发生了变化。

七、AI 的能力什么时候会发生跳跃性变革

开源的模型能够实现私有化部署了,应用场景会更广泛。

如果大模型幻觉可控,PMF会进一步上升。

Context Window 的突破,如果能够支持更多的上下文,也能发送更长的 prompt,RAG也会更好做一些,可以不用类似 embedding 的方式。

八、产品经理需要 Back to the Future

产品经理最早是宝洁定义的一个职位,是非常经典的传统商业定义的职位,当时解决的问题是,我需要一个人同时去负责从品牌到渠道到定价到供应链的所有问题 —— 所以有了个职位叫产品经理。

在过去20年互联网浪潮里,互联网产品经理已经被高度分工化和职能化了,有了交互设计师、UI……各种精细化的岗位,一个人的活拆成了20个人干。

但在今天,做AI应用的产品经理,可能需要回到Day1去思考。

一、他需要很懂(写prompt谁都能干),他需要知道技术的边界在哪、理解现在的模型哪些能干哪些不能干,需要对技术有理解。

二、他需要对成本有理解,卡很贵、算力很贵、LLM很贵、推理很贵……传统互联网可以免费,但做AI应用,他可能在很早阶段就要去想成本问题、想供应链问题。

三、他还需要懂市场,从市场的角度,要定义比如「逆光也清晰」这个市场需求,要怎么实现?拉动底层驱动的工程师说我们要调出这样的效果,逆光也清晰的效果。

总的来说,这也解释了为什么独立开发这么厉害,他们是复合型人才,他们能搞明白所有的问题,然后把东西快速理出来。这是AI时代下对产品经理的要求 —— 其实又回到了宝洁当时的定义。

就像二十年前一个人写出 foxmail 的张小龙。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

在LSTM模型中加入自注意力机制的代码示例如下: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from keras.models import Model, Sequential from keras.layers import Dense, LSTM, Input, Dropout, Lambda, Concatenate, Layer, Activation # 读取数据 data = pd.read_csv('commodity_price.csv', index_col='date', parse_dates=True) # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # 准备训练数据和测试数据 train_data = scaled_data[:int(len(scaled_data)*0.8)] test_data = scaled_data[int(len(scaled_data)*0.8):] # 定义函数,将数据转换为LSTM的输入格式 def create_dataset(dataset, look_back): X, Y = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] X.append(a) Y.append(dataset[i+look_back, 0]) return np.array(X), np.array(Y) # 定义自注意力层 class Attention(Layer): def __init__(self, step_dim, W_regularizer=None, b_regularizer=None, **kwargs): self.supports_masking = True self.init = initializers.get('glorot_uniform') self.W_regularizer = regularizers.get(W_regularizer) self.b_regularizer = regularizers.get(b_regularizer) self.step_dim = step_dim self.features_dim = 0 super(Attention, self).__init__(**kwargs) def build(self, input_shape): assert len(input_shape) == 3 self.W = self.add_weight(name='{}_W'.format(self.name), shape=(input_shape[-1],), initializer=self.init, regularizer=self.W_regularizer, trainable=True) self.features_dim = input_shape[-1] super(Attention, self).build(input_shape) def call(self, x, mask=None): eij = K.reshape(K.dot(K.reshape(x, (-1, self.features_dim)), K.reshape(self.W, (self.features_dim, 1))), (-1, self.step_dim)) ai = K.exp(eij - K.max(eij, axis=1, keepdims=True)) weights = ai / K.sum(ai, axis=1, keepdims=True) weighted_input = x * K.expand_dims(weights) return K.sum(weighted_input, axis=1) def compute_output_shape(self, input_shape): return input_shape[0], self.features_dim # 定义LSTM模型 look_back = 30 inputs = Input(shape=(look_back, 1)) lstm1 = LSTM(64, return_sequences=True)(inputs) attention = Attention(look_back)(lstm1) dropout = Dropout(0.2)(attention) output = Dense(1)(dropout) model = Model(inputs=inputs, outputs=output) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 train_X, train_Y = create_dataset(train_data, look_back) train_X = np.reshape(train_X, (train_X.shape[0], train_X.shape[1], 1)) model.fit(train_X, train_Y, epochs=100, batch_size=32) # 预测未来价格 test_X, test_Y = create_dataset(test_data, look_back) test_X = np.reshape(test_X, (test_X.shape[0], test_X.shape[1], 1)) future_price = model.predict(test_X) # 反归一化 future_price = scaler.inverse_transform(future_price) # 可视化预测结果 plt.plot(data[int(len(data)*0.8):]) plt.plot(pd.date_range(start=data.index[-1], periods=len(future_price), freq='D'), future_price, label='Prediction') plt.title('Commodity Price Prediction using LSTM with Self-Attention') plt.legend() plt.show() ``` 这个代码示例在LSTM模型中加入了自注意力机制。首先,我们定义了一个 `Attention` 类,用于实现自注意力层。然后,我们定义了一个包含自注意力层的LSTM模型,并训练模型。最后,我们使用模型预测未来价格,并将预测结果反归一化并可视化。通过加入自注意力机制,模型可以自动地筛选出对预测结果最有帮助的特征,从而提高模型的预测精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值