Win电脑使用Ollama与Open Web UI搭建本地大语言模型运行工具

前言

本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装Open WebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的llama2、千文qwen等大语言模型运行环境。

近些年来随着ChatGPT的兴起,大语言模型 LLM(Large Language Model)也成为了人工智能AI领域的热门话题,很多大厂也都推出了自己的大语言模型,并或多或少的开源了自己的大语言模型,今天就来分享一个最近很火,且对于小白来说比较好上手本地部署的运行本地LLM的工具Ollama。

在本地运行大语言模型有诸多优点:

比如可以保护隐私不会产生费用可以无视网络问题可以尝鲜各种开源模型等等。

Ollama支持当前主要的开源大模型, 比如llama2、千文qwen、mistral等,可以在Windows、Linux、MacOS系统上进行部署。稳定性和便利性都非常不错,下面就来分享一下它在Windows系统上的安装与应用。

【视频教程】

Windows系统电脑使用Ollama+OpenWebUI快速搭建本地大语言模型体验智能AI聊天

1. 运行Ollama

本文安装环境为:Windows10专业版

下载: Ollama下载地址:https://ollama.com/download

在下载页面点击Windows,然后点击下载按钮。

安装: 下载完成后,双击下载的安装程序。

点击Install进行安装。

安装完成没有提示,我们打开一个终端,本文以Windows PowerShell为例,大家也可以使用其他的:

现在Ollama已经安装完了,我们需要在终端中输入下方命令运行一个大语言模型进行测试,这里以对在中文方面表现相对好些的千问为例,大家也可以使用其他的模型。

代码语言:javascript

复制

ollama run qwen

可以看到,系统正在下载qwen的模型(并保存在C盘,C:\Users.ollama\models 如果想更改默认路径,可以通过设置OLLAMA_MODELS进行修改,然后重启终端,重启ollama服务。)

代码语言:javascript

复制

setx OLLAMA_MODELS "D:\ollama_model"

模型下载完成后,我们就可以在终端中输入问题进行使用了:

至此,在Windows本地部署ollama并运行qwen大语言模型就已经完成了。一键搞定,对新手体验大语言模型真的非常友好。

2. 安装Open WebUI

不过,我们现在只能在终端中使用,操作界面可能不像ChatGPT那样美观,如果能使用web页面进行交互,使用体验更好,也能保留之前的聊天记录,翻遍我们翻阅查询。

针对这个情况,我们可以在Windows上部署Open WebUI这个项目来实现类似chatgpt一样的交互界面。

本教程以Open WebUI这个项目为例,它以前的名字就叫 Formerly Ollama WebUI。可以理解为一开始就是专门适配Ollama的WebUI,它的界面也对用惯了chatgpt的小伙伴来说更相似一些。当然,大家也可以选择其他的WebUI,之后有机会也可以分享给大家。

如何在Windows系统安装Open WebUI:

2.1 在Windows系统安装Docker

首先,如果大家之前未安装过Docker,需要执行下面三个步骤进行安装:

第一步:启动Hyper-v

打开控制面板,在程序与功能页面选择启用或Windows功能

勾选Hyper-V、虚拟机平台、Linux子系统并点击确认

然后,重启计算机。

第二步:安装WSL

打开 powershell,以管理员的身份启动命令窗口,输入

代码语言:javascript

复制

wsl --update

安装

代码语言:javascript

复制

wsl --install

然后再次重启电脑。

第三步:访问Docker官网进行下载

点击下载链接:https://docs.docker.com/desktop/install/windows-install/

选择Windows最新版本:

下载完成后,双击安装程序进行安装,如果是第一次安装,安装后会提示重启电脑,重启后点击桌面的Docker Desktop图标:选择先不注册直接登录即可。

打开Docker Desktop后,左下角显示是绿色的running就代表我们成功了:

2.2 使用Docker部署Open WebUI

在Open WebUI的github页面 https://github.com/open-webui/open-webui 可以看到,如果你的Ollama和Open WebUI在同一台主机,那使用下面显示的这一行命令就可以在本地快速进行部署:

代码语言:javascript

复制

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

现在我们打开终端,比如powershell,然后输入docker,回车

可以看到这个命令成功运行,说明docker安装成功。

然后将上边在docker中部署Open WebUI的命令复制后粘贴到终端中,回车。

然后等待安装完毕即可:如下图所示

安装完成后,在Docker Desktop中可以看到Open WebUI的web界面地址为:https://localhost:3000

点击后,会在浏览器打开登录界面:

点击sign up注册,账号,邮箱,密码记好,下次登录时需要用到邮箱和密码登录:

然后点击create account创建账号即可:然后就能在浏览器中使用类似chatgpt界面的Open WebUI了!

点击右上角的设置,可以修改当前界面的语言为简体中文:然后点击保存即可。

点击上方选择一个模型旁边的加号+可以增加大模型,点击下拉按钮可以选择当前使用哪一个已安装的模型,接下来就可以愉快的跟ai聊天了!

3. 安装内网穿透工具

至此,我们已经成功完成在本地Windows系统使用Docker部署Open WebUI与Ollama大模型工具进行交互了!但如果想实现出门在外,也能随时随地使用Ollama Open WebUI,那就需要借助cpolar内网穿透工具来实现公网访问了!接下来介绍一下如何安装cpolar内网穿透并实现公网访问!

下面是安装cpolar步骤:

cpolar官网地址: https://www.cpolar.com

点击进入cpolar官网,点击免费使用注册一个账号,并下载最新版本的cpolar

登录成功后,点击下载cpolar到本地并安装(一路默认安装即可)本教程选择下载Windows版本。

cpolar安装成功后,在浏览器上访问http://localhost:9200,使用cpolar账号登录,登录后即可看到cpolar web 配置界面,结下来在web 管理界面配置即可。

接下来配置一下 Open WebUI 的公网地址,

登录后,点击左侧仪表盘的隧道管理——创建隧道,

创建一个 ollama1 的公网http地址隧道:

  • 隧道名称:ollama1(可自定义命名,注意不要与已有的隧道名称重复)
  • 协议:选择http
  • 本地地址:3000 (本地访问的地址)
  • 域名类型:免费选择随机域名
  • 地区:选择China Top

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https:

使用上面的任意一个公网地址,在手机或任意设备的浏览器进行登录访问,即可成功看到 Open WebUI 界面,这样一个公网地址且可以远程访问就创建好了,使用了cpolar的公网域名,无需自己购买云服务器,即可到公网访问 Open WebUI 了!

小结

如果我们需要长期异地远程访问Open WebUI,由于刚才创建的是随机的地址,24小时会发生变化。另外它的网址是由随机字符生成,不容易记忆。如果想把域名变成固定的二级子域名,并且不想每次都重新创建隧道来访问Open WebUI,我们可以选择创建一个固定的公网地址来解决这个问题。

4. 创建固定公网地址

我们接下来为其配置固定的HTTP端口地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。

配置固定http端口地址需要将cpolar升级到专业版套餐或以上。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留,保留成功后复制保留的二级子域名名称

保留成功后复制保留成功的二级子域名的名称:myollama,大家也可以设置自己喜欢的名称。

返回登录Cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道:ollama1,点击右侧的编辑:

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名:myollama

点击更新(注意,点击一次更新即可,不需要重复提交)

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:

最后,我们使用固定的公网https地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地访问本地部署的 Open WebUI 了!

以上就是如何在Windows系统本地安装Ollama大模型工具并使用docker部署Open WebUI,结合cpolar内网穿透工具实现公网访问本地LLM,并配置固定不变的二级子域名公网地址实现远程访问的全部流程,感谢您的观看,有任何问题欢迎留言交流。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 安装配置 对于希望在 Windows 10 的 Docker 环境中部署 Open WebUI使用 Ollama 调用 DeepSeek 来实现 RAG (Retrieval-Augmented Generation) 构建个人知识库的情况,需先确保已正确安装 Docker Desktop[^1]。 ### 启动容器 启动带有 GPU 支持的 Open WebUI 容器可以通过特定命令完成。这一步骤至关重要,因为 GPU 可加速模型推理过程: ```bash docker run -d -p 3000:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama ``` 上述命令中的 `-p` 参数用于指定端口映射;`--gpus=all` 表明启用全部可用 GPU 设备支持;而两个卷挂载选项则分别指向必要的数据存储路径[^2]。 ### 配置OllamaDeepSeek集成 为了使 Open WebUI 中集成了 Ollama 的实例能够调用 DeepSeek 进行更复杂任务处理,在初始化设置阶段应确认环境变量或配置文件内指定了正确的 API 访问凭证及其他必要参数。通常这些细节会在官方文档中有具体说明。 ### 使用RAG特性建立个性化资料库 Open WebUI 自带 RAG 功能允许用户通过简单的指令操作来获取实时网络资源并据此生成内容。当想要基于此机制搭建专属的知识体系时,只需按照提示于交互界面里键入 `#` 加上目标 URL 即可即时抓取页面信息作为素材基础[^3]。 例如,如果要从某个网站收集有关机器学习的文章片段加入到自己的数据库中,则可以这样尝试: - 打开浏览器访问 http://localhost:3000 登录至应用首页; - 输入框处打入 `#https://example.com/machine-learning-article` (替换为实际链接地址); - 接下来依照指引保存所需条目直至形成完整的集合体。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值