【LLM大模型】LangChain和Hub的前世今生

作为LLM(大模型)开发框架的宠儿,LangChain在短短几年内迅速崛起,成为开发者们不可或缺的工具。本文将带你探讨LangChain和LangChainHub的发展历程。

1. LLM开发框架的宠儿

这两年人工智能领域发展迅猛,LLM(大模型)的出现功不可没。LLM的发展将整个人工智能领域往前推进了一大步,将人工智能这道狭窄的门撑宽了不少,让我们这些平凡的普通人也有机会挤进人工智能的发展中。

普通开发者在人工智能领域能做什么呢?目前可以发力的领域是:开发基于LLM的App。开发LLM的App有多种实现方式,LangChain是比较流行的一种。

伴随着人工智能的发展,这两年LangChain发展迅猛,GitHub上的star数飙升,近期更是成功融资2亿美刀,足见其受欢迎程度。

早期的LangChain只是作为一个工具或者胶水,集成了多个LLM和多种外部组件(比如记忆、检索、向量数据库、工具集等等),方便开发者快速开发基于LLM的App。

我估计,当时LangChain的创始人对LangChain的定位也不是很清晰,只是觉得AI应用开发是个不错的风口,先搞了再说,这也很符合创业和商业逻辑。

2. 现在的LangChain

随着LLM的发展,一切逐步走向确定性(业内一致认为LLM App是未来的方向),而且可能伴随着商业化的要求,LangChain对自己的定位发生了一些改变。

早期的LangChain可能只是想抓住一波LLM的风口,对于自身的定位也不是很清晰,随着LLM领域更多的发力点在构建基于LLM的App上,LangChain也赶紧调整了自身的定位。

不再定位在:胶水、工具集合等等理念了。更多的强调自己是:构建LLM App的最大社区,基于LangChain可以开发出可推理的应用程序。

调整了定位,生态也自然做了调整,同时软件架构也随之变化,比如:软件包上做了很多重构和重组,核心能力 和 周边社区生态 的边界越发清晰。

同时,还加入了LangSmith用于监控LLM应用,还有LangServe用于部署LLM应用。一切的步伐都在朝着商业化发展。

至此LangChain调整为以下几个核心模块:

  • LangChain-Core:抽象LangChain的内核 和 LangChain 表达式语言。
  • LangChain-Community:集成的各种第三方部件。
  • LangChain:构成LLM应用程序需要的 链、代理和检索等。
  • LangSmith:开发者平台,可让 调试、测试、评估和监控 基于任何 LLM 框架上构建的链,并与 LangChain 无缝集成。
  • LangServe:用于将 LangChain 的应用 部署为 REST API。

这几点我们从官网的架构图清晰可见。也可以认为此时的LangChain变成了一个SAAS化的开发者平台。而它提供的组件、工具、监控、部署等生态,也都是为了让开发者方便的开发出LLM App,然后部署到这个平台上。

LangChain是一个优秀的LLM开源框架,也无法避免走上常规的开源软件商业化的套路。

在这里插入图片描述

3. 早期的LangChainHub

LangChain早期推出的各种组件中LangChainHub是其中一个比较有意思的项目。

早期LangChainHub对自己的定位如下:LangChainHub 受 Hugging Face Hub 启发,是一个用于发现和提交常用的 提示、链、代理等的平台。早期,LangChainHub以Prompt集合为起点,然后很快扩展到 链 和 代理。

这个定位我们从之前的LangChainHub在github仓库上的目录可见一斑。

在这里插入图片描述

此时的LangChainHub 可以理解为LangChain 工具包 或者说 组件中心,里面提供了高质量的组件方便开发者使用。确确实实是一个分享和探索Prompt、链 和Agent的地方。

比如,我们要基于reAct机制实现一个Agent,如果自己写一堆Prompt(提示词)那就太费劲了。此时,在LangChainHub就有许多现成可用的Prompt模板,使用简单又省事,所以LangChainHub迅速流行开。

4. 现在的LangChainHub

那现在的LangChainHub在新的LangChain架构图的哪里呢?我也觉得挺奇怪的,LangChainHub也是算生态里较为重要的版块,架构图里居然没提。

后来发现,LangChainHub被放到了LangSmith里。这个从新版的官方文档也是清晰可见。

这也算合情合理吧,毕竟LangSmith是一个开发者平台,用于调试、测试、评估、监控基于LLM框架的链,在这个平台上,可以使用和创建Prompt。

在这里插入图片描述

早期的时候LangChainHub有Prompt、Chain、Agent,现在也只有Prompt了。我个人对LangChainHub的定位多少觉得有些悲凉了,LangChainHub沦为了Prompt模板仓库。

我认为这背后存在两种可能的原因:

  • 可能是商业化的要求吧,将常用的Prompt模板挪到开发者平台LangSmith里,毕竟LangSmith是有各种付费计划的。
  • 可能是官方对于LangChainHub里的内容开始做收缩,聚焦于Prompt,毕竟Prompt比较独立 而且易于交付。而Chains 和 Agents 相对来说,交付难度高一些,变动性也低,所以官方直接将 Chains 和 Agents 沉淀到自己的核心库里,这样也能保证Chains 和 Agents 的质量,保证自己的口碑。

LangChainHub真的是始于Prompt,终于Prompt!!!当然啦,以后的LangChainHub怎么发展就不得而知了。

庆幸的是,我们大部分场景还是使用Prompt模板居多,此时的LangChainHub里依旧能找到大咖们贡献的复杂常用的Prompt模板,降低了我们使用ReAct、Tool的门槛。

5. LangChainHub的使用

下面我们通过一个示例,来看看如何使用LangChainHub。

5.1. 拆解LangChainHub的Prompt

比如:要实现一个reAct机制,如果我们自己写提示词,那太复杂了。但是LangChainHub上已经有大佬定义好了相关提示词。

比如:structured-chat-agenthttps://smith.langchain.com/hub/hwchase17/structured-chat-agent),提示词写的还是有点复杂的,大致意思就是:告诉LLM,它可以使用一堆什么格式的工具,然后先推理,选择合适的工具,执行之后,进行观察,观察完了之后,继续推理,如果有答案了,就回复用户。

具体内容如下:

在这里插入图片描述

5.2. 使用LangChainHub

使用LangChainHub上的Prompt就2步:

  1. 导入LangChainHub库
  2. 从Hub上拉取对应的提示词

接下来举个例子,比如,LLM在直接计算浮点数加减时会出现错误,我要做一个基于reAct框架的AI Agent,让这个Agent帮我精准计算浮点数。这里使用LangChainHub里的structured-chat-agent来简化我的流程。

具体代码如下:

from langchain import hub
from langchain.agents import create_structured_chat_agent, AgentExecutor, tool
from langchain.memory import ConversationBufferMemory
from langchain.schema import HumanMessage
from langchain.tools import BaseTool
from langchain_openai import ChatOpenAI

model = ChatOpenAI(
    model="gpt-3.5-turbo",
    openai_api_key="sk-xnAKVC6V0LzBwqGK9fE59cFcBc3f40DcBf96C135112dFb63",
    openai_api_base="https://api.aigc369.com/v1",
)


# 定义工具
class SumNumberTool(BaseTool):
    name = "数字相加计算工具"
    description = "当你被要求计算2个数字相加时,使用此工具"

    def _run(self, a, b):
        return a["title"] + b["title"]


# 加入到工具合集
tools = [SumNumberTool()]

# 使用reAct的提示词
prompt = hub.pull("hwchase17/structured-chat-agent")

# 创建Agent
agent = create_structured_chat_agent(llm=model, tools=tools, prompt=prompt)

# 创建记忆组件
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

# 创建Agent执行器
agent_executor = AgentExecutor.from_agent_and_tools(
    agent=agent, tools=tools, memory=memory, verbose=True, handle_parsing_errors=True
)

agent_executor.invoke({"input": "你帮我算下 3.941592623412424 + 4.3434532535353的结果"})

6. 总结

本文主要聊了LangChain和LangChainHub的发展变迁,还介绍了LangChainHub的使用,希望对你有帮助!

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值