YOLO使用的是txt格式作为标签,来训练分割网络
目前转换方法直接搜很多个人的代码,不知道效果如何,但是目前官方也给出了代码实现
链接: yolov8简单实用工具
另外其他yolo问题可以直接点进链接,问问右下角的AI,说不定会有你要的答案
具体代码如下
masks_dir就是你要转换的掩码路径
output_dir是你要输出txt的路径
classes是你的数据有多少类别,这里需要注意,类别与掩码的值对应,比如说你这里classes=2,那么你的掩码值必须是第一类为1,第二类为2。不能是通常的255,会警告并且转换输出为空。
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80)
也给出一下将掩码值转换的代码,需要自己设定convert_255_to_1函数里的规则。
import cv2
import os
import numpy as np
def convert_255_to_1(image):
"""
定义转换规则,将值或一定范围内的值转为你需要的值,默认是大于1的全转为1
你也可以设置其他比如将64转为2,np.where(64, 2, image)
参数:
- image: 输入图像(单通道灰度图像)
返回:
- modified_image: 修改后的图像
"""
# 将255值转换为1
modified_image = np.where(image >= 1, 1, image)
return modified_image
def process_masks(source_directory, output_directory):
"""
处理文件夹下的所有掩码文件,将255值转换为1,并保存修改后的图像。
参数:
- source_directory: 源文件夹路径
- output_directory: 输出文件夹路径
"""
if not os.path.exists(output_directory):
os.makedirs(output_directory)
for filename in os.listdir(source_directory):
if filename.endswith('.png') or filename.endswith('.jpg') or filename.endswith('.jpeg'):
file_path = os.path.join(source_directory, filename)
image = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
if image is None:
print(f"无法读取图像: {file_path}")
continue
modified_image = convert_255_to_1(image)
# 保存修改后的图像
output_path = os.path.join(output_directory, filename)
cv2.imwrite(output_path, modified_image)
print(f"处理完成: {file_path} -> {output_path}")
def main():
source_directory = 原本掩码路径
output_directory = 输出路径
if not os.path.isdir(source_directory):
print("指定的源文件夹路径不是一个有效的文件夹")
return
process_masks(source_directory, output_directory)
if __name__ == "__main__":
main()