分割掩码标注转YOLO多边形标注

Ultralytics 团队付出了巨大的努力,使创建自定义 YOLO 模型变得非常容易。但是,处理大型数据集仍然很痛苦。训练 yolo 分割模型需要数据集具有其特定格式,这可能与你从大型数据集中获得的格式不完全相同。如果你想使用巨大的 OpenImagesV7 作为图像和标签的来源,情况就是如此。

在本教程中,我们将介绍如何从 OpenImagesV7 获取数据(图像和分割掩码);如何将其转换为 YOLO 格式(这是本教程中最复杂的部分);以及如何使用我们的数据集训练 yolov8-seg 模型的预览。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、环境

要清楚:本教程需要 Python 3(在 3.10 下测试)。作为基础图像,我使用 AWS Sagemaker conda_pytorch_p310 ,它包含 PyTorch 和许多常用工具,如 Numpy 和 OpenCV。不过,我们需要一些额外的包来覆盖它:

sudo yum install -y openssl-devel openssl11-libs libcurl
pip install --upgrade pip setuptools wheel
pip install fiftyone
pip install fiftyone-db-rhel7 --force-reinstall
pip install shapely polars
pip install ultralytics

2、数据集

我们将使用 Google OpenImages Dataset v7 来训练我们的模型。这个数据集非常庞大,有数百万张图像,旨在完成一系列计算机视觉任务,例如对象检测、分类和实例分割。因此,每张图像都与这些任务的标签配对,涵盖了最常见的多种对象:人、脸、狗、猫、汽车、树木等。请注意,并非所有标签都适用于所有任务,因此在数据集网站上进行一些探索以了解它涵盖了您正在尝试构建的模型的扩展范围是值得的。对于大多数计算机视觉问题来说,这可能已经足够了。

因此,要实际获取数据,有一个很棒的工具叫做 FiftyOne,它能够只下载你需要的数据。这避免了下载和处理整个数据集的负担。我是否已经提到它非常庞大?如果没有 FiftyOne,处理起来真的很难。

第一步是选择一个好的位置来下载数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值