acwing算法基础之基础算法--求逆序对的数目

1 知识点

合并两个有序数组,对于有序数组[l,mid]和有序数组[mid+1,r],将i指向前者,将j指向后者。在将每一个j插入最终有序数组中时,计算 s j = m i d − i + 1 s_j=mid-i+1 sj=midi+1,此为(x,nums[j])的逆序对数目。

2 模板

//数组nums,返回数组中逆序对的数目
long long merge_sort(vector<int> &nums, int l, int r) {
    if (l >= r) {
    	return 0;
    }
    
    long long res = 0;
    int mid = l + r >> 1;
    res = merge_sort(nums, l, mid) + merge_sort(nums, mid + 1, r);
    
    int i = l, j = mid + 1;
    vector<int> t;
    while (i <= mid && j <= r) {
        if (nums[i] <= nums[j]) {
            t.emplace_back(nums[i++]);
        } else {
            t.emplace_back(nums[j++]);
            res += mid - i + 1;
        }
    }
    while (i <= mid) {
        t.emplace_back(nums[i++]);
    }
    while (j <= r) {
        t.emplace_back(nums[j++]);
    }
    
    for (int i = l, j = 0; i <= r; ++i, ++j) {
        nums[i] = t[j];
    }
    return res;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值