2025-0328学习记录10——光谱特征

遇到瓶颈了,在对土地覆盖进行分类的时候,由于实际地表类型复杂多样,采用监督分类方法,计算机会仅根据地物光谱特征进行分类,结果中势必有错分和漏分的现象,与实际地表覆被信息有别。尤其是在有大量山体分布的地区,山体的阳坡和阴坡光谱响应有巨大差异,而阴坡对分类结果的影响不可避免,往往会把阴坡的草地分成湿地。

今天要深入的理解一下什么是像元的光谱特征、光谱波段曲线等等,学会在GEE中提取地物光谱特征。

1 什么是像元的光谱特征

像元的光谱特征(Spectral Features of a Pixel) 是指遥感影像中每个像元在不同波段上的反射率或辐射值。简单来说,就是传感器接收到的各个波段的电磁波信息,用于区分不同的地物类型。

多光谱和高光谱遥感影像会记录多个波段的信息,每个像元在这些波段上的反射率值形成了它的光谱特征。不同地物(如水体、植被、建筑物等)在不同波段上的反射率不同,因此可以通过分析这些特征来进行分类。

光谱特征的核心要点

  • 光谱反射率(Spectral Reflectance):地物对不同波长的电磁波的反射程度。

  • 光谱曲线(Spectral Signature):某一地物在多个波段上的反射率分布曲线,用于区分不同地物。

  • 光谱指数(Spectral Indices):通过特定波段的组合计算得出的特征值(如NDVI)。

像元的光谱特征可以通过原始光谱信息光谱指数两种方式来表示:

(1)原始光谱信息:

在遥感影像中,每个像元的光谱特征通常由多个波段的值组成。例如,Sentinel-2 影像有 13 个波段,每个像元可能有如下数据:

波段波长范围 (nm)典型用途
B1443大气校正、海洋研究
B2490蓝光,可见光
B3560绿光,植被分析
B4665红光,植被健康分析
B5705红边,植被生长
B6740红边,植被分析
B7783近红外,植被分析
B8842近红外,NDVI计算
B8a865近红外,水文研究
B9945水汽吸收
B101375大气校正
B111610短波红外,土壤和植被含水量
B122190短波红外,地表分类

例如:

  • 植被在近红外波段(NIR,B8)上反射率很高,在红光波段(B4)上反射率很低。

  • 水体在红光(B4)、近红外(B8)和短波红外(B11、B12)上吸收率高,反射率低。

(2)光谱指数

为了增强特定的光谱特征,人们经常计算光谱指数,如:

  • 归一化植被指数(NDVI):衡量植被活力

  • 归一化水体指数(NDWI):检测水体

  • 土壤调节植被指数(SAVI):用于减少土壤背景影响

这些指数可以进一步提取像元的光谱特征,使分类更加准确。


打个比方,光谱特征就像是“颜色指纹”:

想象一下,你走进一个超市,看到各种各样的水果🍎🍊🍌。即使不摸、不闻,你也可以仅凭颜色来区分它们:

  • 🍎 苹果:红色

  • 🍊 橙子:橙色

  • 🍌 香蕉:黄色

如果再细一点,你会发现:

  • 青苹果 🍏 是绿色的,红苹果 🍎 是红色的。

  • 熟透的香蕉 🍌 是金黄色的,没熟的香蕉是青绿色的。

在遥感影像里,不同的地物(如水、植被、城市建筑等)也像这些水果一样,每种地物都有自己独特的“颜色指纹”,这就是它们的光谱特征

不过,遥感影像不仅仅是人眼能看到的颜色(红、绿、蓝),它还能捕捉人眼看不见的光(近红外、短波红外等)。这些“隐形颜色”进一步帮助我们精确区分不同地物


但事实上,光谱特征本质上是数字,它们表示某个像元(Pixel)在不同波段上的反射率或辐射值。

在遥感影像中,每个像元的光谱特征是由多个波段的数值组成的。例如,Sentinel-2 影像有 13 个波段,那么每个像元的光谱特征就可以用 13 个数字来表示:

📌 假设一个像元的光谱特征:

波段反射率值(0-1之间)
蓝光(B2)0.12
绿光(B3)0.15
红光(B4)0.10
近红外(B8)0.78
短波红外(B11)0.30

💡 从这组数值可以看出:

  • 这个像元在红光(B4)上反射率很低,但在近红外(B8)上反射率很高,这说明它可能是植被,因为植被的典型特征就是红光吸收强、近红外反射高。


2 光谱特征在影像中如何存储

遥感影像的光谱信息存储方式可分为 单光谱、彩色(RGB)、多光谱和高光谱 四类。

1. 单光谱影像(Panchromatic Image, PAN)

  • 特点

    • 只有一个波段(单通道),通常是 可见光全波段(0.4~0.7 μm) 的综合反射率。

    • 由于覆盖较宽的光谱范围,分辨率通常较高(如 WorldView-3 的 PAN 影像分辨率可达 0.31 m)。

  • 存储方式

    • 灰度值(0255 或 065535) 形式存储像素亮度信息。

    • 典型格式:GeoTIFF(.tif)、JPEG 2000(.jp2)等。

  • 用途

    • 主要用于增强其他影像的细节(如 PAN-Sharpening,即全色锐化)。

    • 适用于需要高空间分辨率但不要求高光谱分辨率的应用,如城市规划、道路提取等。

2. 彩色影像(RGB, True Color Image)

  • 红(Red)、绿(Green)、蓝(Blue) 三个波段组成,类似人眼视觉感知的彩色影像。

  • 典型数据源:航空影像、部分商业卫星(如 Google Earth 底图)。

  • 常见存储格式:GeoTIFF、JPEG、PNG。

3. 多光谱影像(Multispectral Image, MS)

  • 包含 4~20 个波段,覆盖可见光、近红外、短波红外等波段。

  • 典型数据源:

    • Landsat-8/9(11 个波段,30m 分辨率)

    • Sentinel-2(13 个波段,10~60m 分辨率)

  • 数据存储:

    • 影像栅格存储为多通道 TIFF 或 HDF 格式,每个波段单独存储一个通道。

4. 高光谱影像(Hyperspectral Image, HS)

  • 包含 数十到数百个连续波段(如 AVIRIS,224 个波段)。

  • 典型数据源:

    • AVIRIS(224 波段,10nm 光谱分辨率)

    • Hyperion(220 波段)

  • 存储格式:

    • 采用 ENVI(.hdr + .dat)、HDF5、NetCDF 形式存储,每个波段对应一个数据层。


总结

影像类型波段数典型波长范围主要用途典型存储格式
单光谱(PAN)10.4~0.7 μm高分辨率地物提取、全色锐化GeoTIFF, JP2
彩色(RGB)3可见光视觉解读、地图制图JPEG, PNG, GeoTIFF
多光谱(MS)4~20可见光 + 近红外 + SWIR植被指数、土地利用分类GeoTIFF, HDF
高光谱(HS)100+连续窄波段(0.4~2.5μm)物质识别、端元分析ENVI, HDF5, NetCDF

3 如何获取 Sentinel-2 影像的光谱曲线

下面,我想利用GEE来获取到Sentinel-2影像中山体阴坡、阳坡以及湿地的光谱波段曲线:

(1)选择研究区域和时间

首先,我们在 GEE 里加载 Sentinel-2 影像,并筛选研究区域和时间范围:

var roi = ee.Geometry.Point([100.0, 38.0]);  // 替换为研究区中心点
var s2 = ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')
           .filterBounds(roi)
           .filterDate('2024-01-01', '2024-03-01') // 选择时间范围
           .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 10)) // 过滤云量小于10%的影像
           .median();  // 取时间范围内的中值影像

(2)计算坡向(Aspect)用于区分阴坡和阳坡

var dem = ee.Image('USGS/SRTMGL1_003');  // 载入 SRTM DEM
var slope = ee.Terrain.slope(dem);  // 计算坡度
var aspect = ee.Terrain.aspect(dem);  // 计算坡向

// 定义阳坡(南向坡,90°~270°)
var sunFacing = aspect.gt(90).and(aspect.lt(270));
// 定义阴坡(北向坡,270°~360° 和 0°~90°)
var shadowFacing = aspect.lt(90).or(aspect.gt(270));

(3)选择典型像素点

手动选择代表阴坡、阳坡的样本点:

var sunSlope = ee.Geometry.Point([100.02, 38.02]);  // 阳坡
var shadowSlope = ee.Geometry.Point([100.01, 38.01]);  // 阴坡

(4)提取光谱反射率曲线

提取 Sentinel-2 的 10 个主要光谱波段:

var bands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B11', 'B12'];

// 获取各地物的光谱反射率
var sunSlopeValues = s2.reduceRegion({
  reducer: ee.Reducer.mean(),
  geometry: sunSlope,
  scale: 10
});

var shadowSlopeValues = s2.reduceRegion({
  reducer: ee.Reducer.mean(),
  geometry: shadowSlope,
  scale: 10
});


// 打印光谱反射率
print("阳坡光谱:", sunSlopeValues);
print("阴坡光谱:", shadowSlopeValues);

(5)在 GEE 中绘制光谱曲线

var chart = ui.Chart.image.regions({
  image: s2,
  regions: ee.FeatureCollection([
    ee.Feature(sunSlope, {label: '阳坡'}),
    ee.Feature(shadowSlope, {label: '阴坡'}),
  ]),
  reducer: ee.Reducer.mean(),
  scale: 10,
  xProperty: 'label'
}).setOptions({
  title: '光谱曲线',
  hAxis: {title: '波段'},
  vAxis: {title: '反射率'}
});

print(chart);

查看结果:

光谱数据也可以下载CSV文件到本地,再用Excel进行处理和分析:

4 如何进一步分析光谱曲线信息

(1) 观察光谱特征差异

  • 阴坡 vs. 阳坡

    • 阴坡通常因受阳光照射少,整体反射率较低,特别是在短波红外(SWIR)波段。

    • 阳坡在可见光和近红外(NIR)波段的反射率较高。

(2) 计算典型光谱指数

var ndvi = s2.normalizedDifference(['B8', 'B4']).rename('NDVI');
var ndwi = s2.normalizedDifference(['B3', 'B8']).rename('NDWI');

这次就先做这些吧,分析的结果发现:山体的阴坡和阳坡光谱特征存在很大的差异,这也是很多时候用计算机进行分类时,明明山体阴坡和阳坡的植被一致,分类结果却不一样的主要原因,机器学习分类器进行分类时,光谱特征就是一个很重要的分类依据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值