Python多进程opencv调用rtsp视频流(改进版)

本文介绍了如何使用Python的多进程来优化opencv读取rtsp视频流的性能,通过将读取和处理视频分开,减少内存溢出和延迟问题。文章提供了一个抽象基类的设计,使得图像处理算法易于定制和调试,并给出了两种使用示例:经典用法和上下文+迭代器的用法。
摘要由CSDN通过智能技术生成

  • 前几天遇到了一个问题,利用opencv程序调取rtsp视频流,因为处理程序要消耗的CPU时间过于长,VideoCapture的read是按帧读取,所以经常导致内存溢出,延时还高得出奇。

    所以想到是不是可以利用多进程把读取视频和处理视频分开,这样就可以消除因处理图片所导致的延迟。

  • 逻辑论证在上一篇中有讲解,但是会有程序不好读、不好移植、不好维护的缺点,而且图片的处理算法放到进程内也不好调试。

  • 经过一年多的学习又加上最近看完了《流畅的python》就正好改进一下直接重新包装实现VideoCapture。同时也感谢@qq_39658909的提问

所用库

multiprocessing
gc
opencv-python
abc

实现方法

  • 不熟悉抽象基类的话可以直接看总结
  • 将主要的实现逻辑写成一个抽象基类ABVideoCapture,其子类只用关心要做的图像算法,并实现到.process_image(image)这一方法中,就可以定制一个自带算法处理的实时VideoCapture
  • ABVideoCapture也可以选择重构.write静态方法以支持从其他的数据源中读取图片。这里边有鸭子类型带来的好处
  • ABVideoCapture.read_gen()是一个生成器函数,也是整个实例可以快速运行的核心,ABVideoCapture.read()ABVideoCapture.__iter__()都依赖于它。实例会维护一个由它返回的生成器ABVideoCapture.__read_gen。它可以一个一个的生成经过自定义算法处理过后的缓存栈顶的图片。
  • 抽象基类实现了迭代器协议__iter__和上下文管理器协议__enter____exit__

实现代码

import gc
import abc
from multiprocessing import Process, Manager

import cv2


# 定义抽象基类,此类不能直接实例化
# 做好框架
# 其子类只用实现.process_image方法,返回任意图像算法处理后的从缓存栈中读取的图片
class ABVideoCapture(abc.ABC):
    def __init__(self, cam, top=100):
        self.stack = Manager().list()
        self.max_cache = top
        self.write_process =</
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值