2021SC@SDUSC
目录
前面的博客分析了generator.py中的代码,接下来我们对其引用的pargs.py中的dynArgs和pargs方法进行分析。
pargs.py引入了torch和argparse两个包,这两个包在前面博客已经分析过了,就不再赘述了。
dynArgs方法
def dynArgs(args,ds)://定义的dynArgs有两个参数,一个是args,一个是ds,args是由第二个方法pargs得到的,ds是由ds = dataset(args)得到的数据集,下面args的各个参数都是由ds的参数来赋值的 args.ntoks = len(ds.OUTP.vocab)//ntoks参数是由ds.OUTP.vocab的长度得到的,而ds.OUTP.vocab是在lastDataset中定义的,如下图 args.tgttoks = len(ds.TGT.vocab)//tgttoks参数是由ds.TGT构建的词表的长度得到的,而ds.TGT.vocab是复制的ds.OUTP.vocab,如下图 args.ninput = len(ds.INP.vocab)//ninput参数是由ds.INT构建的词表的长度得到的,而ds.INT.vocab在lastDataset中定义的,如下图 args.vtoks = len(ds.ENT.itos)//vtoks参数是由ds.ENT.itos的长度得到的,而ds.ENT.itos在lastDataset中定义的,itos按照下标的顺序返回每一个单词 args.rtoks = len(ds.REL.itos)//rtoks参数是由ds.REL.itos的长度得到的,而ds.REL.itos在lastDataset中定义的,如下图 args.starttok = ds.OUTP.vocab.stoi["<start>"]//starttok是由下图的方法实现的它取的是在"<start>"情况下的值,stoi返回每一个单词与其对应的下标 args.dottok = ds.OUTP.vocab.stoi["."]//dottok和上面的方法一样,不过它取的是在"."情况下的值 args.ent_vocab = ds.ENT.itos//将ds.ENT.itos的值赋给ent_vocab参数 args.inp_vocab = ds.INP.vocab.itos//将ds.INP.vocab.itos的值赋给inp_vocab参数 args.lrchange = (args.lrhigh - args.lr)/args.lrstep//计算提升效率,lr是learning rate,lrhigh是high learning rate for cycling args.esz = args.hsz//将参数hsz赋给esz return args//该方法最后返回已经对args的各个参数赋值完成的args
至此,pargs方法已分析完毕,下篇博客将介绍dynArgs方法。