豪斯多夫(Hausdorff)距离

一、定义

给定欧氏空间中的两点集 A = { a 1 , a 2 , . . . } , B = { b 1 , b 2 , . . . } A= \{a_1,a_2,...\},B= \{b_1,b_2,...\} A={a1,a2,...},B={b1,b2,...} ,豪斯多夫(Hausdorff)距离就是用来衡量这两个点集间的距离。定义公式如下:
H ( A , B ) = max ⁡ [ h ( A , B ) , h ( B , A ) ] H(A,B)=\max[h(A,B),h(B,A)] H(A,B)=max[h(A,B),h(B,A)]其中,
h ( A , B ) = max ⁡ a ∈ A min ⁡ b ∈ B ∣ ∣ a − b ∣ ∣ h ( B , A ) = max ⁡ b ∈ B min ⁡ a ∈ A ∣ ∣ b − a ∣ ∣ h(A,B)=\max_{a\in A}\min_{b\in B} ||a-b||\\ h(B,A)=\max_{b\in B}\min_{a\in A} ||b-a|| h(A,B)=aAmaxbBmin∣∣ab∣∣h(B,A)=bBmaxaAmin∣∣ba∣∣
H ( A , B ) H(A,B) H(A,B) 称为双向 Hausdorff 距离, h ( A , B ) h(A,B) h(A,B) 称为从点集A到点集B的单向 Hausdorff 距离。相应地 h ( B , A ) h(B,A) h(B,A) 称为从点集B到点集A的单向 Hausdorff 距离。

二、例子

下面从一个例子来理解 Hausdorff 距离:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
上图中,给出了 A,B,C,D 四条路径,其中路径 A 具体为(16-17-18-19-20),路径 B 具体为(1-2-3-4-9-10)。要求 Hausdorff 距离 H ( A , B ) H(A,B) H(A,B),则需要先求出单向 Hausdorff 距离 h ( A , B ) h(A,B) h(A,B) h ( B , A ) h(B,A) h(B,A)

对于 h ( A , B ) h(A,B) h(A,B),以 A 中的点 16 为例,在路径 B中的所有点中,距离点 16 最近的是点 1 ,距离为 3。即: min ⁡ b ∈ B ∣ ∣ a ( 16 ) − b ∣ ∣ = 3 \min_{b\in B} ||a_{(16)}-b||=3 bBmin∣∣a(16)b∣∣=3

同理由图可得:
min ⁡ b ∈ B ∣ ∣ a ( 17 ) − b ∣ ∣ = 3 min ⁡ b ∈ B ∣ ∣ a ( 18 ) − b ∣ ∣ = 3 min ⁡ b ∈ B ∣ ∣ a ( 19 ) − b ∣ ∣ = 2 min ⁡ b ∈ B ∣ ∣ a ( 20 ) − b ∣ ∣ = 2 \min_{b\in B} ||a_{(17)}-b||=3\\ \min_{b\in B} ||a_{(18)}-b||=3\\ \min_{b\in B} ||a_{(19)}-b||=2\\ \min_{b\in B} ||a_{(20)}-b||=2\\ bBmin∣∣a(17)b∣∣=3bBmin∣∣a(18)b∣∣=3bBmin∣∣a(19)b∣∣=2bBmin∣∣a(20)b∣∣=2
在它们中,值最大的为 3,故 h ( A , B ) = 3 h(A,B)=3 h(A,B)=3

同理可得, h ( B , A ) = 4 h(B,A)=4 h(B,A)=4

所以 H ( A , B ) = m a x [ h ( A , B ) , h ( B , A ) ] = 4 H(A,B)=max[h(A,B),h(B,A)]=4 H(A,B)=max[h(A,B),h(B,A)]=4

同理可求出上图中四条路径间的单向 Hausdorff 距离如下表所示:在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

三、性质
  • 双向 Hausdorff 距离 H ( A , B ) H(A,B) H(A,B) 是单向 Hausdorff 距离 h ( A , B ) h(A,B) h(A,B) h ( B , A ) h(B,A) h(B,A) 两者中较大者,显然它度量了两个点集间的最大不匹配程度。

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

  • 如上图,当 A 和 B 都是闭集的时候,Hausdorff 距离满足度量的三个定理:
  1. H ( A , B ) ≥ 0 H(A,B)\geq0 H(A,B)0 ,当且仅当 A = B A=B A=B 时, H ( A , B ) = 0 H(A,B)=0 H(A,B)=0
  2. H ( A , B ) = H ( B , A ) H(A,B)=H(B,A) H(A,B)=H(B,A)
  3. H ( A , B ) + H ( B , C ) ≥ H ( A , C ) H(A,B) + H(B,C)\geq H(A,C) H(A,B)+H(B,C)H(A,C)
  • 若凸集 A , B A,B A,B 满足 A ⊄ B A\not\subset B AB B ⊄ A B\not\subset A BA,并记 ∂ A , ∂ B \partial A,\partial B AB 分别为 A , B A,B A,B 边界的点集合,则 A , B A,B A,B 的 Hausdorff 距离等于 ∂ A , ∂ B \partial A,\partial B AB 的 Hausdorff 距离。

  • Hausdorff 距离易受到突发噪声的影响。
    在这里插入图片描述

当图像受到噪声污染或存在遮挡等情况时,原始的 Haudorff 距离容易造成误匹配。所以,在1933年,Huttenlocher 提出了部分 Hausdorff 距离的概念。
简单地说,包含 q q q 个点的集合 B B B 与集合 A A A 的部分 Hausdorff 距离就是选取 B B B 中的 K ( K ≥ 1 且 K ≤ q ) K(K\geq1且K\leq{q}) K(K1Kq) 个点,然后求这 K K K 个点到 A A A 集合的最小距离,并排序,则排序后的第 K K K 个值就是集合 B B B 到集合 A A A 的部分单向 Hausdorff 距离。定义公式如下:
h K ( A , B ) = K t h max ⁡ a ∈ A min ⁡ b ∈ B ∣ ∣ a − b ∣ ∣ h_K(A,B)=K^{th} \max_{a\in A}\min_{b\in B}||a-b|| hK(A,B)=KthaAmaxbBmin∣∣ab∣∣
相应地,部分双向 Hausdorff 距离定义为:
H K ( A , B ) = max ⁡ [ h K ( A , B ) , h K ( B , A ) ] H_K(A,B)=\max[h_K(A,B),h_K(B,A)] HK(A,B)=max[hK(A,B),hK(B,A)]

参考:

https://www.cnblogs.com/xlz10/p/3929119.html

  • 32
    点赞
  • 117
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 14
    评论
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万俟淋曦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值