基础理论:集合的Hausdorff距离

本文介绍了Hausdorff距离的概念,这是一个衡量度量空间中两个子集之间距离的数学工具。Hausdorff距离定义了如何计算两个集合之间最远点对的距离,并在道格拉斯-普克算法中有所应用,用于曲线降采样。通过实例解释了如何使用Hausdorff距离比较不同形状的相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、Hausdorff距离定义

二、Hausdorff距离有什么用途?


一、Hausdorff距离定义

        在数学中,Hausdorff 距离或 Hausdorff 度量,也称为 Pompeiu-Hausdorff 距离,测量度量空间的两个子集彼此之间的距离。它将度量空间的非空紧凑子集的集合转换为本身的度量空间。它以菲利克斯豪斯多夫和迪米特里庞培命名。

定义:若存在集合A和集合B,若A和B不相交,那么,从集合A上某点p到集合B存在一个最短路径距离d,遍历A集合上所有点p1、p2...pN,那么,这些点到B存在一系列最短距离:d1、d2、...dN,那么d(max)=max(d1、d2、...dN)就是集合A到集合B的-Hausdorff距离。

维基的叙述如下:

  假设有两组集合A={[a_1,\dots a_p]}, B={[b_1,\dots,b_q]},则这两个点集合之间的Hausdorff距离定义为

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无水先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值