【读论文】多核学习算法及其在高光谱图像分类中的应用研究进展(2021)

本文总结了多核学习算法在高光谱图像分类中的应用,探讨了核函数组合方法、分类算法,并指出该领域面临的问题,包括数据量大、空间特征利用不足等。论文展望了未来研究方向,强调了多核学习算法在高光谱遥感图像领域的潜力和挑战。
摘要由CSDN通过智能技术生成

【读论文】多核学习算法及其在高光谱图像分类中的应用研究进展(2021)
李广洋
DOI 10.12082/dqxxkx.2021.200536

摘要:

多核学习算法在高光谱图像分类领域占据着十分重要的地位。与灰度图像、全色图像和多光谱图像等相比,高光谱图像因具有很强的分类识别能力等多方面优势而被广泛应用。为进一步提高高光谱图像的分类精度,促进多核学习算法在高光谱图像分类中的应用,本文对多核学习算法及其在高光谱图像分类中的应用进行了总结。首先在回顾核方法的基础上阐述了多核学习框架,其次对多核学习核函数组合方法进行综述,随后根据求解多核学习组合系数方法的不同将多核学习分为两类:固定规则的多核学习算法和基于优化的多核学习算法,并对两类多核学习算法在高光谱图像分类中的应用进行综述,总结各类算法在高光谱图像分类的应用进展。同时,为了便于研究者对多核学习算法及其在高光谱图像分类问题中的应用研究,本文对常用核函数和高光谱图像数据集进行了整理归纳。最后,讨论了多核学习算法在高光谱图像分类研究方面的不足,并对未来研究方向进行了展望,以期为该领域的研究和应用提供参考。

关键词:

支持向量机;多核学习算法;遥感;高光谱;图像分类;核函数;多视图;特征融合

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氧艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值