最新Deepseek+coze实现新闻播报自动化工作流

1ee81ed2-5732-4fee-a

效果展示

✨**** 灵感来源

近期观察到 Coze 平台上出现了多种视频自动化视频玩法,如认知觉醒、英语单词学习等。本文将介绍如何通过 DeepSeek + Coze 实现新闻播报的自动化生成工作流,让我们能够仅通过输入新闻链接,即可一键生成图文并茂的短视频新闻。

那么这样视频是怎么做到的?不需要手动去采集新闻和剪辑,而是用扣子,花不到30秒的时间和0.0几元的成本(也有不花钱的方案,后面介绍)自动完成

今天带着大家Step by Step 创建一条 deepseekR1 + coze 实现的自动新闻视频实用工作流吧

希望大家在2025,能用AI简化自己的工作,降本增效!****⭐

整个工作流分为四大模块:

  1. 1. 内容获取与处理
  2. 2. 画面生成
  3. 3. 语音合成
  4. 4. 视频合成

🎯**** 核心功能

这套系统能够实现:

  1. 1. 一键提取新闻内容
  2. 2. 智能生成播报文案
  3. 3. AI 语音合成播报
  4. 4. 自动化视频制作
  5. 5. 全流程无人工干预

🌟**** 工作流程详解

第一步:内容获取

只需输入新闻链接,系统就能自动提取核心内容

开始节点,入参:1、新闻链接 2、视频合成插件api_key

添加网页图片链接提取插件,承接开始节点的新闻链接

获取网页里的图片,我们这里以1ai.net的资讯为例子,这里的资讯都比较简单,只有一张主图,标题,内容都齐全,所以适合我们来操作

当我们输入1ai.net的一则新闻,发现,提取出很多链接

有趣的是,第一条链接就是新闻主图,其他内容都是不重要的icon

所有我们就要添加图片链接提取节点,如果我们为了节省写代码时间,直接用大模型节点帮我们提取,只拿提取的链接集合的第一条,这样新闻的主要图片就搞定了。

图片链接提取提示词

提取json格式{{input}}所有链接中的第一个链接,直接给出干干净净的url链接,比如:https://www.1ai.net/wp-content/uploads/thumb/2025/02/fill_w720_h480_g0_mark_9371bfaaj00sryokh002cd000p400eop.jpg

接着利用,调整图片的节点,将url属性的图片内容转化为image属性的图片(因为url节点在画板中是string的格式,所以必须转为img格式)

现在到了文字部分,使用链接读取节点,将文字内容提取出来

在提取链接后面接上一个大模型节点,用来重写新闻成为口播稿子,这里用到最强的DeepseekR1模型,来生成有吸引力的口播内容

小tips,如果想要加上自己的特征,可以在提示词里写:”开头加上‘这里是伊登AI’之类的个性化台词防伪“

# 角色
你是一位经验丰富、创意十足的新闻主编,同时也是备受关注的爆款新闻短视频博主,对新闻热点有着极其敏锐的洞察力。

## 技能
### 技能 1: 生成新闻视频口播内容
1. 仔细且全面深入地剖析{{input}}文章内容,精准提炼出核心要点。
2. 以极具吸引力的黄金三秒开头,创作出清晰、准确且有效的视频口播内容。内容需控制在 3 - 5 句内,每句话不超过 40 字,要突出新闻的关键亮点。
3. 在口播开头添加“这里是伊登AI,欢迎来到一分钟热点新闻”。

## 限制:
- 仅直接给出口播稿,不输出其他任何无关信息!!!
- 严格围绕新闻相关内容进行创作,坚决不回答与新闻无关的问题。
- 输出的口播内容必须严格符合规定的句数和字数要求。

PS:这里的deepseekR1基础版本是限额使用,我们可以在专业版手动接入DeepseekR1

手动接入推理模型

🎁

首先点击这个https://www.volcengine.com/experience/ark?utm_term=202502dsinvite&ac=DSASUQY5&rc=A6NPZ83H

领取375万R1模型的tokens(和硅基某某不一样,火山方舟的deepseeR1有很高性能和速度)手机的小伙伴可以扫描二维码

然后到https://www.volcengine.com/,根据以下截图自行接入推理点

这样,我们就能在扣子使用不限额的使用deepseekR1,但是也会消耗赠送的额度,需要注意。

最后,我们为了下面批处理,需要数组类型的句子内容,所以提前做一个格式变化,当然我们可以用代码节点或者文本处理来处理json台词,但是这里用大模型,下期可以考虑经济型

把{{input}}内容输出成json格式,每句话分开

第二步:画面生成

在这里我们的思路是,做成一帧一帧的主图+台词,配合语音合成,保证音屏同步

由于上一步我们生成一句一句的口播内容,因此我们用批量化节点,做成一帧一帧的画面,用画板节点完成

批量处理节点,输入的是格式变化后的json格式的文案

批处理中,先把一些固定内容在画板节点安排好,比如背景图片

然后引入变量元素,比如新闻图片(已经提取并转换为img属性)、新闻标题(来自链接读取)、口播台词(已经提取并二创)

小tips:想要找好看的背景图我推荐去可画挑选一个好看的视频模板然后,保存为【图片】格式,然后放在画板节点,当作底图

第三步:语音合成

使用声音合成的官方插件

  • 引用批处理的一句一句的新闻文案内容
  • 可调节语速和语气
  • 多种播音风格可选

在画板和语音合成的节点后面加入图片音频合成插件

PS:这个插件需要收费,登录https://ts.fyshark.com/#/login?user_id=7486,【个人中心】充值获取token,放入这个节点中,不过充值10元可以做好久了,这个插件适合小白同学,也有不收费的插件,但是比较吃操作,如果感兴趣也可以关注我后续出相关教程

这个插件的img_audio_video的功能是把图片+视频合成,这样就实现了一段一段的口播新闻内容

第四步:成片导出

全自动视频合成这里使用的是多视频融合插件

  • 一键导出成品

最后多段一句话口播图文视频出来后,将他们结合在一起,成为一整段视频使用视频融合节点

注意,节点产生的视频是异步生成,可能没办法马上展现,过几秒种后才处理完成出现,耐心等待

演示

可以在扣子商店体验,建议自己搭建一个,因为用的是我的水印(如果你不介意的话) V

🌟

嗨,我是Yeadon!

一名人工智能专业的大三学生,正在努力成为AI时代的超级个体~

<think>好的,用户想了解如何使用Coze开发AI工作流实现自动化数据抓取、处理并生成股票市场分析文章。首先,我需要回忆Coze平台的功能,特别是工作流模块。根据引用[2],Coze工作流支持模块化和可视化的任务流程构建,适合处理多步骤任务和数据处理。 接下来,用户的需求包括数据抓取、数据处理和文章生成。数据抓取可能需要集成网络爬虫或API,引用[3]提到使用deepseek进行数据提取,但具体到股票数据,可能需要考虑使用金融数据API,比如Alpha Vantage或Yahoo Finance的接口。需要注意API调用权限和数据格式。 然后是数据处理部分,可能需要清洗数据、计算指标(如移动平均线、RSI等),这需要设计相应的工作流节点,可能涉及Python脚本的编写。Coze是否支持自定义代码节点?引用[2]提到可以调用插件和数据处理,可能需要查看文档确认。 生成分析文章需要自然语言处理,可能结合模板和数据分析结果。Coze是否有内置的文本生成模型,比如GPT?可能需要配置LLM节点,引用[1]中的情报助手案例可能涉及类似的技术。 还需要考虑定时触发,确保工作流每天自动运行。Coze工作流是否有定时触发器功能?根据引用[2],工作流支持模块化设计,可能包含触发条件设置。 最后,用户可能需要测试和部署工作流,确保各环节衔接无误。同时,数据存储和安全性也是需要考虑的,比如中间数据如何保存,是否使用Coze的内部存储或外部数据库。 可能的问题:如何获取实时股票数据?如何处理数据中的异常值?如何优化生成文章的可读性?需要逐一解答,并确保步骤清晰,用户能逐步实施。</think>以下是如何使用 Coze 开发 AI 工作流实现股票市场自动化分析的完整解决方案: ### 一、架构设计 采用模块化工作流设计,分为数据采集层(含网络爬虫/API接口)、数据分析层(Python脚本处理)和内容生成层(LLM+模板引擎)三层架构[^2][^3]。 ```mermaid graph TD A[定时触发器] --> B{数据采集模块} B --> C[股票API接口] B --> D[财经新闻爬虫] C --> E[数据清洗节点] D --> E E --> F[技术指标计算] F --> G[LLM分析引擎] G --> H[报告生成模板] ``` ### 二、关键节点实现 1. **数据抓取层** - 使用`HTTP Request`节点接入AlphaVantage API: ```python # 示例API参数配置 params = { "function": "TIME_SERIES_DAILY", "symbol": "IBM", "apikey": "YOUR_KEY", "datatype": "json" } ``` - 配置新闻爬虫节点: ```javascript // 使用Cheerio解析页面 $('.news-article').each((i,el) => { const title = $(el).find('h3').text(); results.push(title); }) ``` 2. **数据分析层** - 通过`Python节点`计算技术指标: ```python def calculate_rsi(data): delta = data['close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() rs = gain / loss return 100 - (100 / (1 + rs)) ``` 3. **报告生成层** - 配置提示词模板: ``` [市场分析报告模板] 今日${date}市场概况: - 上证指数涨跌幅:${sse_change}% - 成交量TOP3板块:${top_sectors} - 技术面信号:${technical_signals} 重点新闻: ${news_summary} ``` ### 三、部署与优化 1. 设置每日09:30自动触发工作流 2. 添加异常处理节点监控API调用频次 3. 配置缓存机制存储历史数据对比 4. 集成数据验证模块(标准差检测异常值) ### 四、测试要点 1. 使用历史行情数据验证指标计算准确性 2. 模拟网络延迟测试超时重试机制 3. 评估生成报告的可读性与数据一致性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值