CVPR 2023 Highlight | Nvidia SOTA-NKSR:神经核表面重建

NVIDIA在CVPR 2023提出了名为SOTA-NKSR的新方法,从大规模、稀疏和噪声点云中重建3D隐式表面。该方法基于神经核场(NKF)表示,解决了NKF的局限,如使用紧凑支持核处理大规模场景,对噪声的鲁棒性以及训练要求的减少。通过梯度拟合和稀疏线性求解器,SOTA-NKSR在物体级和室外驾驶场景的重建中展现优越性能,适用于具有不同密度和尺度的训练数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:宁了个宁  | 来源:3D视觉工坊

在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf和代码链接。

添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。

cbb3a6ddfeeb230eb9a7e42b0e2c5331.png
图1:我们提出了用于从输入点云恢复3D表面的神经核表面重建(NKSR)。直接从密集点进行训练,我们的方法达到了最先进的重建质量和可扩展性。NKSR还具有高度的泛化性:该图中的所有网格都是使用单个训练模型重建的。

1.摘要

我们提出了一种从大规模、稀疏和噪声点云重建3D隐式表面的新方法。我们的方法建立在最近引入的神经核场(NKF)表示之上。它具有与NKF相似的泛化能力,同时解决了其主要限制:(a)我们可以通过使用内存高效的稀疏线性求解器的紧凑支持核函数来处理大规模场景。(b)我们通过梯度

### 如何安装Matterport3D Simulator #### 工具准备 为了成功安装并运行Matterport3D Simulator,需要先完成一些必要的准备工作。这包括下载和配置所需的开发工具以及软件包管理器。具体来说,CMake GUI 和 Visual Studio 是构建过程中不可或缺的部分[^1]。 #### 安装依赖项 在正式进入编译阶段之前,必须确保所有的外部库和支持组件都已经正确部署到位。这部分工作通常涉及多个步骤,比如设置Python环境、安装特定版本的Boost以及其他可能被调用到的功能模块。当这些前置条件满足之后,就可以着手处理核心部分——即源代码本身的组装过程[^2]。 #### 编译选项说明 官方文档指出存在两条主要路径来实现该目标:一是通过容器化技术(如 Docker),二是基于本地主机资源的传统方法来进行搭建[^3]。前者利用虚拟隔离机制简化跨平台兼容性问题的同时也降低了手动调整参数的工作量;后者则给予用户更多自定义权限但相应地增加了复杂度和技术门槛。 对于初学者而言推荐优先尝试采用预置镜像文件的方式快速入门体验功能特性后再考虑深入研究优化性能表现等方面的内容。而对于那些希望完全掌控整个流程或者遇到特殊需求场景下的开发者,则可以选择第二种途径以获得更大的灵活性。 ```bash # 使用Docker方式启动Simulator docker pull matterport/simulator:vlatest-tag docker run -it --rm -p 8080:8080 matterport/simulator:vlatest-tag bash ``` 如果决定自行构建而非依靠现成映像的话,请参照以下命令序列执行操作: ```bash git clone https://github.com/your-repo-link-here.git cd your-cloned-directory-name/ mkdir build && cd $_ cmake .. make -j$(nproc) sudo make install ``` 以上脚本适用于Linux发行版Ubuntu 16.04环境下按照指示逐步推进直至最终产物生成为止的过程概述。 #### 测试验证环节 最后一步就是确认一切正常运作无误啦!可以通过简单的例子程序去检验成果是否达到预期效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值