图像形成(4)投影几何语言中的图像形成

图像形成(4) 投影几何语言中的图像形成

  本文是上一篇文章的部分补充。

  我们已经知道描述的透视针孔照相机模型的两个式子【系列的上一篇博文有描述】:

λ x ′ = K Π 0 g X 0 \lambda x^\prime = K \Pi_0gX_0 λx=KΠ0gX0

  和其简化式

λ x ′ = Π X 0 = K Π 0 g X 0 \lambda x^\prime = \Pi X_0=K\Pi_0gX_0 λx=ΠX0=KΠ0gX0

  这两个式子保留了所涉及的所有参数的物理意义。

  特别地, x ′ x^\prime x X X X的最后一个元素被归一化为1,使得其他元素可以对应于实际的2-D和3-D坐标(相对于为各个坐标系选择的度量单位)。 然而,只要我们知道这些齐次向量的方向是重要的,那么这种归一化并不总是必要的。 例如,两个向量

[ X , Y , Z , 1 ] T , [ X W , Y W , Z W , W ] T ∈ R 4 [X,Y,Z,1]^T,[XW,YW,ZW,W]^T\in \mathbb{R}^4 [X,Y,Z,1]T,[XW,YW,ZW,W]TR4

  可用于表示 R 3 \mathbb{R}^3 R3中的相同点。 类似地,我们可以使用 [ x ′ , y ′ , z ′ ] T [x^\prime,y^\prime,z^\prime]^T [x,y,z]T来表示2D图像平面上的点 [ x , y , 1 ] T [x,y,1]^T [x,y,1]T,只要 x ′ / z ′ = x x^\prime/z^\prime=x x/z=x y ′ / z ′ = y y^\prime/z^\prime=y y/z=y。 但是,如果最后一个元素 W W W z ′ z^\prime z碰巧是0,我们可能会遇到麻烦。为了解决这个问题,我们需要引入齐次坐标的解释。

射影空间及其齐次坐标

  三维射影空间 P n \mathbb{P}^n Pn是向量空间 R n + 1 \mathbb{R}^{n+1} Rn+1的一维子空间(即,通过原点的线)的集合。 博主在博文中有过描述,举例了 I P 2 \mathbb{IP}^2 IP2 R 3 \mathbb{R}^3 R3中过原点射线的集合。

  然后可以为在 P n \mathbb{P}^n Pn中的点分配齐次坐标 X = [ x 1 , x 2 , . . . , x n + 1 ] T X=[x_1,x_2,...,x_{n+1}]^T X=[x1,x2,...,xn+1]T,其中至少一个 x i x_i xi是非零的。 对于任何非零 λ ∈ R \lambda \in \mathbb{R} λR,坐标 Y = [ λ y 1 , λ y 2 , . . . , λ y n + 1 ] T Y=[\lambda y_1,\lambda y_2,...,\lambda y_{n+1}]^T Y=[λy1,λy2,...,λyn+1]T P n \mathbb{P}^n Pn中代表相同的点 p p p。 我们说 X X X Y Y Y是等价的,用 X ∼ Y X \sim Y XY表示。

小例子-投影空间的拓扑模型

  图1展示了2D投影空间 P 2 \mathbb{P}^2 P2的两个等价几何解释。

图1 P 2 \mathbb{P}^2 P2的拓扑模型

  根据定义,它只是 R 3 \mathbb{R}^3 R3中通过点 o o o(通常选择为坐标系的原点)的1D直线 { L } \{L\} {L}的族。因此, P 2 \mathbb{P}^2 P2可以被视为2D球 S 2 \mathbb{S}^2 S2,其中任何一对对映点(例如,图中的 p p p p ′ p^\prime p)被识别为 P 2 \mathbb{P}^2 P2中的一个点。在图1的右侧,穿过中心 o o o的线通常在一个独特的点处与平面 { z = 1 } \{z=1\} {z=1}相交,除非它们都位于平面上 { z = 0 } \{z=0\} {z=0}。在 { z = 0 } \{z=0\} {z=0}平面中的线简单地形成 1 D 1D 1D投影空间 P 1 \mathbb{P}^1 P1(实际上是圆形)。因此, P 2 \mathbb{P}^2 P2可被视为 2 D 2D 2D平面 R 2 \mathbb{R}^2 R2(即 { z = 1 } \{z=1\} {z=1}),其附有圆 P 1 \mathbb{P}^1 P1。如果我们采用平面中的直线 { z = 0 } \{z=0\} {z=0}与平面 { z = 1 } \{z=1\} {z=1}无限远相交的视图,则此圆 P 1 \mathbb{P}^1 P1表示无穷远处的直线。这个圆上一个点的齐次坐标则采用 [ x , y , 0 ] T [x,y,0]^T [x,y,0]T;另一方面, R 2 \mathbb{R}^2 R2中的所有常规点都有坐标 [ x , y , 1 ] T [x,y,1]^T [x,y,1]T。通常,任何射影空间 P n \mathbb{P}^n Pn都可以以类似的方式可视化: P 3 \mathbb{P}^3 P3是在无穷远处有平面 P 2 \mathbb{P}^2 P2 R 3 \mathbb{R}^3 R3; P n \mathbb{P}^n Pn是在无穷远处有平面 P n − 1 \mathbb{P}^{n-1} Pn1 R n \mathbb{R}^n Rn,然而这难以说明。

  使用此定义, R n \mathbb{R}^n Rn及其齐次表示可以被识别为 P n \mathbb{P}^n Pn的子集,其恰好包括坐标为 X = [ x 1 , x 2 , . . . , x n + 1 ] X=[x_1,x_2,...,x_{n+1}] X=[x1,x2,...,xn+1],其中 x n + 1 ≠ 0 x_{n+1}\neq 0 xn+1̸=0,的那些点。因此,如果我们愿意,我们总是可以通过将 X X X除以 x n + 1 x_{n+1} xn+1来将最后一个元素归一化为1。 然后,在由 λ x ′ = K Π 0 X = [ K R , K T ] X 0 \lambda x^\prime=K\Pi_0X= [KR,KT]X_0 λx=KΠ0X=[KR,KT]X0 λ x ′ = Π X 0 = K Π 0 g X 0 \lambda x^\prime=\Pi X_0= K\Pi_0gX_0 λx=ΠX0=KΠ0gX0描述的针孔相机模型中, λ x ′ \lambda x^\prime λx x ′ x^\prime x现在在 P 2 \mathbb{P}^2 P2中表示相同的投影点,因此在图像平面中表示相同的2D点。 假设投影矩阵是

Π = K Π 0 g = [ K R , K T ] ∈ R 3 × 4 \Pi = K\Pi_0g=[KR,KT]\in \mathbb{R}^{3\times 4} Π=KΠ0g=[KR,KT]R3×4

  然后,相机模型简单地缩小为从三维投影空间 P 3 \mathbb{P}^3 P3到二维投影空间 P 2 \mathbb{P}^2 P2的投影,

(1) π : P 3 → P 2 ; X 0 ↦ x ′ ∼ Π X 0 \pi:\mathbb{P}^3 \rightarrow \mathbb{P}^2;X_0\mapsto x^\prime \sim \Pi X_0\tag{1} π:P3P2;X0xΠX0(1)

  这里省略了 λ \lambda λ,因为等价 ∼ \sim 是在齐次意义上定义的,例,即直到非零标量因子。

  直观地,在 P 3 \mathbb{P}^3 P3中具有第四坐标 x 4 = 0 x_4=0 x4=0的剩余点可以被解释为“无限远离原点”的点。 这是因为对于非常小的值 ε \varepsilon ε,如果我们将 X = [ X , Y , Z , ε ] T \boldsymbol{X}=[X,Y,Z,\varepsilon]^T X=[X,Y,Z,ε]T的最后一个元素归一化为1,则它在 R 3 \mathbb{R}^3 R3中产生一个点,其中三维坐标 X = [ X / ε , Y / ε , Z / ε , 1 ] \boldsymbol{X}=[X/\varepsilon,Y/\varepsilon,Z/\varepsilon,1] X=[X/ε,Y/ε,Z/ε,1] ∣ ε ∣ |\varepsilon| ε越小,距离原点越远。 实际上,所有具有坐标 [ X , Y , Z , 0 ] T [X,Y,Z,0]^T [X,Y,Z,0]T的点形成由等式 [ 0 , 0 , 0 , 1 ] T X = 0 [0,0,0,1]^T{\boldsymbol X}=0 [0,0,0,1]TX=0描述的二维平面,因为 X , Y , Z X,Y,Z XYZ不是完全自由的:坐标仅由标量因子决定。该平面在无穷远处的平面。 我们通常用 P ∞ P_{\infty} P来表示该平面。也就是说,

P ∞ = ˙ P 3 / R 3 ( = P 2 ) P_{\infty}\dot=\mathbb{P}^3/\mathbb{R}^3(=\mathbb{P}^2) P=˙P3/R3(=P2)

  然后,上述公式(1)描述的成像模型在整个投影空间 P 3 \mathbb{P}^3 P3上得到明确定义,包括无穷远处的平面中的点。 这种轻微的概括使我们能够谈论距离相机无穷远的点的图像。

无穷远点和"消失点(灭点,vanishing points)"的图像

   R 3 \mathbb{R}^3 R3中的两条平行线不相交。 但是,我们可以将它们视为在无穷远处相交。 令 V = [ V 1 , V 2 , V 3 , 0 ] ∈ R 4 \boldsymbol{V}=[V_1,V_2,V_3,0]\in \mathbb{R}^4 V=[V1,V2,V3,0]R4为(齐次)向量表示两条平行线的方向 L 1 L^1 L1 L 2 L^2 L2。让 X o 1 = [ X o 1 , Y o 1 , Z o 1 , 1 ] T \boldsymbol{X}_o^1=[X_o^1,Y_o^1,Z_o^1,1]^T Xo1=[Xo1,Yo1,Zo1,1]T X o 2 = [ X o 2 , Y o 2 , Z o 2 , 1 ] T \boldsymbol{X}_o^2=[X_o^2,Y_o^2,Z_o^2,1]^T Xo2=[Xo2,Yo2,Zo2,1]T分别是两条线上的两个点。 然后, L 1 L^1 L1上的点的(齐次)坐标可以表示为

X 1 = X o 1 + μ V , μ ∈ R X^1=X_o^1+\mu V,\mu \in \mathbb{R} X1=Xo1+μV,μR

  对于 L 2 L^2 L2上的点也是如此。 然后可以将这两条线视为在无穷远处与坐标 V V V相交。 这个交点的“像”,传统上称为消失点(灭点),通过下式简单地给出了

x ′ ∼ Π V x^\prime \sim \Pi V xΠV

  这可以通过考虑线上的点的图像并且渐近地使用 μ → ∞ \mu \rightarrow \infty μ来显示。 如果给出这两条线的图像,则可以容易地计算或测量该交点的像。 图2显示了平行线的图像交点在消失点处,这是文艺复兴时期艺术家所熟知的概念。

图2。 拉斐尔(Raphael)(1518年)的“雅典学院”(The School of Athens),一个具有中心消失点的建筑视角的典范,标志着古典文艺复兴的终结。

例子2-图像“在图像平面之外”

  考虑一对平行线的标准透视投影,如上一个例子所示。 我们进一步假设它们也平行于图像平面,即 x y − xy- xy平面。 在这种情况下,我们有

Π = Π 0 = [ I , 0 ] \Pi=\Pi_0=[I,0] Π=Π0=[I,0]

V = [ V 1 , V 2 , 0 , 0 ] T \boldsymbol{V}=[V_1,V_2,0,0]^T V=[V1,V2,0,0]T

  因此,交点的“图像”在齐次坐标中给出
x ′ = [ V 1 , V 2 , 0 ] T x^\prime = [V_1,V_2,0]^T x=[V1,V2,0]T

  这与2D图像平面上的任何物理点都不对应(其点应该具有 [ x , y , 1 ] T [x,y,1]^T [x,y,1]T形式的齐次坐标。 事实上,它是在无穷远处的消失点。 尽管如此,我们仍然可以将其视为有效的图像点。 一种方法是将其视为具有零深度的点的图像(即, z z z坐标为零)。 如果我们选择成像表面是整个球体而不是平面,这样的问题将自动消失。 如图3所示。

图3。两条平行线的透视图像也平行于二维图像平面。 在这种情况下,它们与y轴平行。 图像平面上的两条图像线也是平行的,因此它们不相交。 然而,在图像球上,两个像圈 c 1 c^1 c1 c 2 c^2 c2在点 x x x处相交。 显然,x是两条图像线的方向。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YuYunTan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值