我们将用更加偏向科普的方式来介绍 ChatGPT,让大家了解 ChatGPT 的原理,以及它背后的关键技术——预训练。
1对ChatGPT的误解
1.1罐头讯息误解
许多人认为ChatGPT像一个自动售货机,当提出问题时,它会从预设的选项中随机挑选一个回答。这种误解源于对AI生成文本的不了解。实际上,ChatGPT的回复并非预设的“罐头讯息”,而是根据输入实时生成的。每次提问,即使是相同的问题,也可能得到不同的答案,ChatGPT具有动态生成能力。
1.2网络搜索结果误解
另一个普遍的误解是ChatGPT通过实时网络搜索来回答问题。人们可能认为,当询问某个问题时,ChatGPT会快速浏览互联网上的信息,然后整合搜索结果给出答案。然而,ChatGPT的生成过程是离线的,它不依赖于实时网络搜索。它生成的文本是独立完成的,通常在网络上找不到完全相同的答案。
2ChatGPT的工作原理
2.1文字接龙模型
ChatGPT的核心是一个复杂的“文字接龙”模型。这个模型接收一段文本作为输入,预测并生成接下来的词或短语。这个过程涉及到复杂的算法,它评估每个可能的词汇在给定上下文中的概率,并选择最合适的词汇继续文本。
2.2参数和复杂性
GPT3 有 1700 亿的参数,所以 ChatGPT 总不会比 GPT3 少,这使得它能够理解和生成多样化的语言结构。这些参数在模型的训练过程中不断调整,以更好地捕捉语言的复杂性和细微差别。
2.3训练与测试的区别
但是没有联网的 ChatGPT 是如何通过大量网络数据来进行学习的呢?这里我们要分明确训练和测试,要切成两个部分来看,**寻找函数的过程,我们叫做训练。寻找函数的时候, ChatGPT 有去搜集网络的数据,来帮助他找到这个可以做文字接龙的函数。但是当这个可以做文字接龙的函数被找出来以后,模型就不需要联网了,就进入下一个阶段了,叫做测试。训练是模型学习的过程,而测试是模型应用知识回答问题的阶段。**在训练阶段,ChatGPT通过分析大量数据学习语言模式。一旦训练完成,模型就进入测试阶段,此时它不再依赖外部数据,而是根据已学到的知识生成回答。
3预训练技术
3.1自监督学习和基石模型
预训练。预训练这个技术其实又有各式各样的名字,有时候它又叫做自监督学习,有的人又把预训练得到的模型叫做基石模型。
预训练是一种自监督学习的形式,它允许模型在没有明确监督的情况下学习语言的基本结构。这种方法生成的模型被称为基石模型,它们可以作为其他应用的基础。
预训练显著提高了ChatGPT的性能。通过在大量文本上进行训练,模型学会了语言的通用模式,这使得它能够更好地理解和生成语言。
因为这个 ChatGPT 是由 GPT 产生出来的,所以这类像 GPT 通过自监督式学习得到的模型,今天又叫做基石模型
3.2多语言能力
预训练还赋予了ChatGPT多语言能力。模型不仅在一个语言上进行训练,而是在多种语言上,这使得它能够理解和生成不同语言的文本。
4ChatGPT的训练过程
4.1从GPT到ChatGPT的演变
ChatGPT的发展经历了从早期的GPT模型到当前版本的演变。每一代模型都在前一代的基础上进行了改进,包括增加参数数量和训练数据的规模。
4.2监督式学习和强化学习
ChatGPT的训练过程包括监督式学习和强化学习。在监督式学习阶段,模型根据人类标注的正确答案进行训练。而在强化学习阶段,模型根据反馈调整其生成的文本,以更好地满足用户的需求。
通过这些训练技术,ChatGPT能够提供准确、相关且多样化的回答,使其成为深度学习领域的一个重要应用。尽管存在一些误解,但ChatGPT的复杂性和能力是其成功的关键。随着技术的不断发展,我们可以期待ChatGPT在未来变得更加智能和有用。
我们知道 ChatGPT 中不只是有监督式的学习,还有加上强化学习,其使用的是强化学习中常见的** PPO 算法 。**
在强化学习中,人不是直接给机器答案,而是告诉机器,现在你的答案是好还是不好。强化学习的好处是,相较于监督式学习,监督式学习的人类老师是比较辛苦的,而在强化学习中,人类老师可以偷懒,只需要指导大的方向。那什么时候适用强化学习呢?第一个就是想偷懒的时候,因为用强化学习,可以更容易地收集到更多的数据,人类老师付出的心力比较少,所以可以给予更多的回馈。另外一个更重要的点在于,强化学习更适合用在人类自己都不知道答案的时候。举例来说,请 ChatGPT 帮我写诗来赞美 AI。其实很多人当场是写不出来的,但是也许如果机器写一首,你可以判断这首诗是不是一首好诗。所以假设今天一个问题的答案,人类都不太确定应该是什么样子时,用强化学习节省人类的力量,人类不需要自己给答案,只需要给回馈就好。
ChatGPT 的学习基本上就是三个步骤——先做预训练,再做监督学习,然后做强化学习。
5带来的研究问题
5.1如何精准提出需求
精准提出需求是指用户如何有效地与AI沟通,使其能够理解并满足用户的具体需求。这涉及到对AI的“调教”,即通过精心设计的提示**(prompting)**来引导AI生成期望的输出。研究者正在探索如何系统化这一过程,使AI能够更准确地理解和响应复杂的用户指令。
5.2神经编辑
如何让机器修改一个错误,不要弄错更多地方,这会是一个新的研究的主题,即神经编辑**(neural editing)**。我们知道这些模型都是神经网络,那怎么去修改神经网络,怎么对神经网络做一些微调让它变成我们要的样子,这个就是神经编辑的工作
5.3判断AI生成内容
随着AI生成内容的普及,如何区分人类创作和AI生成内容成为一个重要问题。研究者正在开发检测机制,以识别文本、音频或视频是否由AI生成,这对于版权保护、内容验证和信任度评估等方面具有重要意义。
有话说::::ChatGPT本身就是一个工具,那我们应该要学习去使用它,就好像计算机也是一个工具,搜索引擎也是一个工具,那我们并不会因为使用这些工具就变笨,而是我们把我们脑力留在更需要的地方。
5.4避免AI泄露机密信息
AI模型可能无意中泄露训练数据中的敏感信息。研究者正在探索如何设计和训练模型,以确保它们在回答问题时不会泄露机密信息,这包括开发新的隐私保护技术和数据脱敏方法。
5.5使用AI辅助写作的伦理问题
AI辅助写作引发了关于学术诚信和原创性的讨论。教育者和研究者正在探讨如何在保持学术诚信的同时利用AI工具,以及如何评估AI辅助作品的原创性和学术价值。
5.6教育领域的应用
AI在教育领域的应用包括个性化学习、自动评分和辅助研究。然而,这也带来了关于如何平衡技术使用和保持教育质量的问题,以及如何确保学生在使用AI工具时发展必要的批判性思维和创造力。
5.7抄袭和原创性的讨论
AI写作工具的普及引发了关于抄袭的新问题。研究者和教育者正在讨论如何定义AI辅助下的抄袭,并制定相应的政策和指导原则,以确保学术诚信。
5.8隐私问题和Machine unlearning
随着AI模型可能接触到大量个人数据,如何保护用户隐私成为一个重要议题。Machine unlearning,或称机器反学习,是指让模型忘记它曾经学到的特定信息,以响应数据删除请求或保护隐私。研究者正在探索实现这一目标的技术方法。