前言·
随着人工智能技术的蓬勃发展,尤其是大模型(Large Model)的强势兴起,越来越多的企业对这一领域愈发重视并加大投入。作为大模型产品经理,需具备一系列跨学科的知识与技能,方能有效地推动产品的开发、优化以及市场化进程。以下是一份详尽的大模型产品经理学习路线,旨在助力你构建所需的知识体系,实现从零基础到精通的蜕变。
一、基础知识阶段
(一)计算机科学基础
- 数据结构与算法:深入理解基本的数据结构(如数组、链表、树、图等)以及常用算法(如排序、查找、递归等)。
- 编程语言:熟练掌握至少一种编程语言,例如 Python,因其是当前数据科学领域中最为常用的编程语言之一。
- 数据库:了解关系型数据库(如 MySQL)和非关系型数据库(如 MongoDB)的基本操作。
(二)人工智能与机器学习基础
- 机器学习原理:熟知监督学习、无监督学习、强化学习等基本概念。
- 深度学习基础:熟悉神经网络的基本组件(如卷积层、池化层、激活函数等)及其工作原理。
- 模型训练与评估:学会如何运用深度学习框架(如 TensorFlow 或 PyTorch)训练模型,并对其进行评估。
二、大模型技术阶段
(一)大模型技术概览