手把手教你NFA转换成DFA

本文详细介绍了非确定有限自动机(NFA)如何转换为确定有限自动机(DFA),通过实例解析了转换过程,包括状态转移的规则和角标的确定。同时,文章探讨了具有ε转移的NFA的转换方法,强调了在转换过程中F状态的处理。内容适合计算机科学与信息技术领域的学生和从业者学习理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先世界上存在这么一个东西

先写出它的NFA

 

 然后就可以开始转换了

 那么具体是怎么转换的呢?

NFA首先看S

S可以通过0转换成P

所以在对应的DFA里写P

 然后S可以通过1转化成S或R,所以在对应的地方写SR

那么多年后的我可能会问道:他们的角标是怎么来的?

据我观察,每一个中括号里面不同的字母们会对应不同的角标,就像S-A P-B SR-C R-D

这样也可以解释每一行的前面都会有一个字母。

这个字母也是DFA的新状态。

第一行写完之后,第二行就是下一个字符串对应的转化了

所以第二行是P的转化,第三行是SR的转化,这样竖排就对应ABCD

这样依次写下去,没有对应的就直接空格,像SR转换成0P。有重复的只写一个。

这样整个表就写完了。

那么就可以画出DFA

 但是世界上还存在这个东西

那么对于这种NFA,应该怎么转化呢

 

 这个就直接把S加AD,A加D,D加A

 只要转化之后就要加上其对应的状态。

 对于F这一列,只要DFA M这列的中括号里面有E,F就是1

 

NFA(非确定性有限自动机)化为DFA(确定性有限自动机)是通过子集构造法实现的。以下是使用Python代码实现NFA化为DFA的过程: ```python class NFA: def __init__(self, states, alphabet, transitions, start_state, final_states): self.states = states self.alphabet = alphabet self.transitions = transitions self.start_state = start_state self.final_states = final_states def epsilon_closure(self, states): closure = set(states) stack = list(states) while stack: current_state = stack.pop() if current_state in self.transitions and 'ε' in self.transitions[current_state]: next_states = self.transitions[current_state]['ε'] new_states = [state for state in next_states if state not in closure] closure.update(new_states) stack.extend(new_states) return closure def move(self, states, symbol): result = set() for state in states: if state in self.transitions and symbol in self.transitions[state]: result.update(self.transitions[state][symbol]) return result def convert_to_dfa(self): dfa_states = [] dfa_transitions = {} start_state = frozenset(self.epsilon_closure([self.start_state])) dfa_states.append(start_state) stack = [start_state] while stack: current_state = stack.pop() for symbol in self.alphabet: next_state = frozenset(self.epsilon_closure(self.move(current_state, symbol))) if next_state not in dfa_states: dfa_states.append(next_state) stack.append(next_state) if current_state not in dfa_transitions: dfa_transitions[current_state] = {} dfa_transitions[current_state][symbol] = next_state dfa_final_states = [state for state in dfa_states if any(final_state in state for final_state in self.final_states)] return DFA(dfa_states, self.alphabet, dfa_transitions, start_state, dfa_final_states) class DFA: def __init__(self, states, alphabet, transitions, start_state, final_states): self.states = states self.alphabet = alphabet self.transitions = transitions self.start_state = start_state self.final_states = final_states def accept(self, input_string): current_state = self.start_state for symbol in input_string: if symbol in self.transitions[current_state]: current_state = self.transitions[current_state][symbol] else: return False return current_state in self.final_states # 示例用法 nfa = NFA( states={'A', 'B', 'C', 'D'}, alphabet={'0', '1'}, transitions={ 'A': {'ε': {'B', 'C'}}, 'B': {'0': {'B'}, '1': {'B', 'D'}}, 'C': {'0': {'C', 'D'}, '1': {'C'}}, }, start_state='A', final_states={'D'} ) dfa = nfa.convert_to_dfa() print(dfa.accept('000')) # 输出 True print(dfa.accept('111')) # 输出 False ``` 上述代码实现了NFA化为DFA的过程。首先定义了NFA类和DFA类,通过epsilon_closure()方法计算ε-closure,move()方法根据给定的symbol计算下一个状态,然后使用子集构造法将NFA化为DFA,最后通过DFA类的accept()方法来判断给定的输入字符串是否被DFA接受。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值