专利领域的人工智能及大模型应用汇总_专利ai

最近,有跟专利领域的朋友在研究大模型的应用,顺带整理了目前全球这个领域的AI系统或者有AI加持的信息系统。供大家参考,排序不代表重要性。

芽仔

开发者:智慧芽信息科技(苏州)有限公司

智慧芽拥有足够多数量的专利数据(包括韩文/英文专利公报、通知书、机器翻译、CPC分类、机器阅读信息、咨询案例集等),以及特有的生物医药数据(包括7 万多种药物、相关临床资料、新闻和对应的保护专利等)。公司已经开发出了专利大模型(Patent GPT)和生物医药大模型(Pharm GPT)。

芽仔是他们给用户提供的一个人工智能助手,从官网介绍看,主要能做两个事:

1)智能撰写规范完整的技术交底书,提升研发人员撰写效率

2)专业调研报告一键生成,助力掌握药物研发进展、临床试验、专利情况、市场规模、竞争格局等关键信息。

体验地址:https://www.zhihuiya.com/products/AI

相关文档:SCM202404001_智慧芽_专利大模型的实践与知识问答探索 (全文可通过文末链接获取)

IP-GPT

开发者:南京理工大学江苏国际知识产权学院

知识产权大模型(IP-GPT),由江苏国际知识产权学院院长戚湧教授团队开发成功,2023年9月对外公布,是全国首个知识产权领域的生成式人工智能大模型。该模型已累积数十万条知识产权专业语料,将作为世界知识产权组织南京理工大学技术与创新支持中心(TISC)的公共服务产品面向社会开放,企业等创新主体或社会公众可通过邮箱注册账号,获得知识产权大模型服务。

太保(Taibao)

开发者:大连理工大学公共管理学院与大连理工大学信息检索研究室(DUTIR)联合开发

利用基座模型Qwen-7B通过指令任务LoRA有监督高效微调得到的。70亿参数的通义千问(Qwen-7B)基座模型在近2.5万亿Tokens的中英、代码、数学乃至专业领域的高质量语料中进行了多轮预训练,初步具备了指令理解的能力,其自然语言处理与理解的能力在国内诸多开源大模型中名列前茅,显著超出同规模模型并紧追一系列最强的闭源模型。

该模型着力于知识产权智能服务领域,围绕知识产权的创造、管理、保护、运用等重要环节开展研发,旨在为用户提供全方位快捷有效的知识产权服务。

体验地址:https://github.com/Mathsion2/Taibao,http://taibao-ip.help/

incoPat

开发者: 北京合享智慧科技有限公司

用户输入一段话,即可精确匹配最大程度公开此技术的在先专利。incoPat利用自然语言处理、人工智能技术,借鉴DNA识别的理念和算法,创建了专利DNA图谱比对方法,抽取发明的核心部件及关系,在专利的文章级别、段落级别、词级别、语义级别进行大规模精准计算,新颖性检索和无效检索的准确性获得革命性提升。

体验地址:https://www.incopat.com/

相关文档:QYF201905001_北京合享智慧科技有限公司_incoPat专利DNA图谱技术白皮书 (全文可通过文末链接获取)‍

Innojoy

开发者:保定市大为计算机软件开发有限公司

大为innojoy专利搜索引擎系统收录全球105个国家1.49亿+专利数据,69个国家/地区/组织PDF全文, 60+个国家/地区/组织的法律状态,45个国家/地区/组织的代码化全文,38个国家/地区/组织的小语种高品质英文翻译, INPADOC同族专利数据,DOCDB引证数据等。

基于卷积神经网络的AI智能技术,在千万级的中文/英文专利语料库中构建语义相似模型,让用户以最高的效率获取相关专利文献

专利文档模型PDM

开发者:欧洲专利局EPO

欧洲专利局利用机器学习和人工智能的业务解决方案,可完成以下工作:

1)自动生成查询;

2)对专利文献自动注释;

3)自动检测专利文献中的问题或解决方案;

4)自动检测对可专利性予以排除。

欧专局还有一个 Data Science团队,主要工作是基于适用的开源软件库,开发自己的人工智能系统。结合大量审查员和数据集(即历史保存的检索数据和该局现有技术语料库),Data Science 团队在大模型开发上发挥了重大作用。

相关文档:SCM201805006_EPO_Artificial Intelligence at the EPO. (全文可通过文末链接获取)

KIPO Patent Expert AI

开发者:韩国知识产权局(KIPO)与LG人工智能研究院联合开发

2023年7月,LG人工智能研究院对外公布了双方的协议。他们的目标是开发可用于搜索、分类和摘要专利文件等行政服务的“专利专家AI”。

这项协议利用LG超大型AI语言模型“EXAONE Universe”,学习韩国知识产权局持有的专利信息而开发。基础数据包括韩文/英文专利公报、通知书、机器翻译、CPC分类、机器阅读信息、咨询案例集等,预计有1.78TB大小的数据。

预计这将是世界上首个将大模型应用于专利管理的案例。目前还没有看到试用体验的Demo。

相关文档:SCM201805007_KIPO_KIPO’s plan for AI.(全文可通过文末链接获取)

Pat Search

开发者:俄罗斯联邦 Federal Service for Intellectual Property (Rospatent) / Federal Institute of Industrial Property (FIPS)

PatSearch系统所实施的专利文献相似性检索功能的实现,源于采用了一组人工智能方法和技术,并结合了全球信息检索最佳做法。目前,相似性检索功能正在俄罗斯专利文献数据库中运行。在建立俄罗斯分布式同义词库过程中,采用了一种针对俄罗斯专利文献的神经网络,其中所涉的标准兼顾了审查程序的复杂性和专家经验。

2015年,在PatSearch系统开发框架内推出了实施专利文献机器翻译的倡议。翻译功能的实现得益于采用了俄罗斯PROMPT公司开发的机器混合翻译系统。该系统涵盖全面的语言分析方法。现已通过运用俄英双语专利文献平行文本的机器学习方法,创建了神经网络。该系统除翻译专利文献外,还能够将CPC译成俄文。

相关文档:SCM201805002_ROS PATENT_BUSINESS CONSULTING BASED ON PATENT ANALYTICS. (全文可通过文末链接获取)

IPCCAT

开发者:World Intellectual Property Organization (WIPO)

专利自动分类系统(IPCCAT)帮助专利申请人和知识产权局审查员依照国际专利分类(IPC)大类、小类或大组,把专利申请自动分类归入相应技术部门。

相关文档:SCM201805004_WIPO_Artificial Intelligence applied to IPC and Nice classifications.(全文可通过文末链接获取)

WIPO Translate

开发者:World Intellectual Property Organization (WIPO)

WIPO Translate是全球领先的即时翻译工具,专门用于专利文献翻译。 它可以通过PATENTSCOPE数据库访问,也可以应要求纳入知识产权局的系统。

相关文档:SCM201805005_WIPO_strategy for developing AI projects, list of current AI projects.(全文可通过文末链接获取)

Derwent Innovation

开发者:Clarivate

人工智能支持的专利检索工具。功能有:

1)通过输入大量纯文本(如权利要求书和说明书)用于检索的语义/智能检索功能;

2)在检索专利文献的同时检索非专利文献;

3)可以手动设置单个检索关键词的权重,以便排列检索结果。

体验地址:

https://clarivate.com/products/ip-intelligence/patent-intelligence-software/derwent-innovation/

相关文档:

Quality Chat Bots

开发者:未知

美国专利商标局用作《专利审查程序手册》(MPEP)以及其他使用算法和权利要求用语的权利要求分析和分类分析提供“概念提问”(而不是关键词),从而更好地了解权利要求用语和分类的趋势。

USPTO自研系统

开发者:USPTO美国专利商标局

该系统结合人工智能与大数据和机器学习提供专利服务。这些服务包括:

1)为审查员提供最实用相关的信息,助其判定申请的专利性;

2)对专利申请以及专利商标局的后续行动进行文本分析,进而分析专利申请历史;

3)改进应用程序接口,令公众访问美国专利商标局数据更加便利。

相关文档:SCM201805003_USPTO_Emerging Technologies in USPTO Business Solutions (全文可通过文末链接获取)

ABBYY智能分类器

开发者:ABBYY

2018年初,瑞士局将推出使用ABBYY智能分类器进行文件分类的自学人工智能。瑞士局持续使用手动分类的文件训练自学人工智能。瑞士局自动分析自学人工智能的结果质量,然后决定是否需要手动确认。手动确认的结果随后用于增强人工智能的训练集。

相关文档:SCM200801001_IGE IPI_Digitalization at the Swiss Intellectual Property Office (全文可通过文末链接获取)

Orbite Intelligence

开发者:Questel

自2011年以来,摩洛哥知识产权局使用人工智能专利分析商业工具Orbite Intelligence,通过技术领域或关键字检索全球专利申请。推出这项基于地图的工具,是为满足摩洛哥技术与创新支持中心网络的需求,检索现有技术和专利先例。

体验地址:

https://www.questel.com/patent/ip-intelligence-software/orbit-intelligence/

Acsepto

开发者:Sword-Group

挪威知识产权局(NIPO)用来检索商标图像。检索结果(命中清单)基于对图像属性编码的人工智能辅助检索进行优先级排序。所使用的人工智能技术是经过训练的编码算法和经过训练的图像编码检索算法。

DPMA IPC分类器

开发者:德国专利商标局DPMA

分类器基于带有“分散词语表达”的神经网络的方法,可实现:

1)对新进入系统的专利申请进行自动预先分类,以改善专利审查员中的专利申请分配;

2)交互式分类,在既定的IPC级别作出若干预测,协助专利审查员的工作;

3)重新分类,支持新版IPC的使用;

4)持续改进现有技术专利文献IPC的质量;

5)基于分类器建立的网络服务将就专利文献的既定部分(如摘要、权利要求书或说明书)作出即时的IPC预测。

另外,日本贸易振兴机构北京代表处曾在2021年针对中国企业应用 “知识产权AI” 的情况做过调研:‍‍

图片来自:QYF202103001_日本贸易振兴机构北京代表处_2020年度中国知识产权AI活用调查委员会成果报告

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

React Hooks 是 React 16.8 中新增的特性,它可以让你在函数组件中使用 state、生命周期钩子等 React 特性。使用 Hooks 可以让你写出更简洁、可复用且易于测试的代码。 React Hooks 提供了一系列的 Hook 函数,包括 useState、useEffect、useContext、useReducer、useCallback、useMemo、useRef、useImperativeHandle、useLayoutEffect 和 useDebugValue。每个 Hook 都有特定的用途,可以帮助你处理不同的问题。 下面是 React Hooks 的一些常用 Hook 函数: 1. useState useState 是最常用的 Hook 之一,它可以让你在函数组件中使用 state。useState 接受一个初始状态值,并返回一个数组,数组的第一个值是当前 state 值,第二个值是更新 state 值的函数。 ``` const [count, setCount] = useState(0); ``` 2. useEffect useEffect 可以让你在组件渲染后执行一些副作用操作,比如订阅事件、异步请求数据等。useEffect 接受两个参数,第一个参数是一个回调函数,第二个参数是一个数组,用于控制 useEffect 的执行时机。 ``` useEffect(() => { // 这里可以执行副作用操作 }, [dependencies]); ``` 3. useContext useContext 可以让你在组件树中获取 context 的值。它接受一个 context 对象,并返回该 context 的当前值。 ``` const value = useContext(MyContext); ``` 4. useRef useRef 可以让你在组件之间共享一个可变的引用。它返回一个对象,该对象的 current 属性可以存储任何值,并在组件的生命周期中保持不变。 ``` const ref = useRef(initialValue); ref.current = value; ``` 5. useCallback useCallback 可以让你缓存一个函数,以避免在每次渲染时都创建一个新的函数实例。它接受一个回调函数和一个依赖数组,并返回一个 memoized 的回调函数。 ``` const memoizedCallback = useCallback(() => { // 这里是回调函数的逻辑 }, [dependencies]); ``` 6. useMemo useMemo 可以让你缓存一个计算结果,以避免在每次渲染时都重新计算。它接受一个计算函数和一个依赖数组,并返回一个 memoized 的计算结果。 ``` const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a, b]); ``` 以上就是 React Hooks 的一些常用 Hook 函数,它们可以帮助你更好地处理组件状态、副作用、上下文和性能优化等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值