DP和DDP的相似之处:
- DP和DDP都是每张卡复制一个有相同参数的模型副本;
- 每次迭代,每张卡分别输入不同批次数据,分别计算梯度
DP和DDP的不同之处:
- DP有一张主卡,单独维护模型优化器。所有卡计算完梯度后,主卡汇聚其他卡的梯度进行平均并用优化器更新模型参数。再将模型参数更新至其他卡上。
- DDP则分别为每张卡创建一个进程,每个进程相应的卡上都独立维护模型和优化器。在每次每张卡计算完梯度之后,进程之间用NCCL进行通信,使各卡获取其他卡的梯度。各卡对获取的梯度进行平均,然后执行后续的参数更新。由于每张卡上的模型与优化器参数在初始化时就保持一致,而每次迭代的平均梯度也保持一致,那么即使没有进行参数复制,所有卡的模型参数也是保持一致的。
- 可以理解为DP为多线程,DDP为多进程
参考链接:https://www.cnblogs.com/qizhou/p/16770143.html
FSDP使属于DDP的一种,主要是在于要把DDP中的all-reduce操作拆解为reduce-scatter和all-gather 操作(在参数处理的时候)
参考链接:https://blog.csdn.net/qinduohao333/article/details/131650137
如何退出DDP多卡?
直接用sys.exit()就行
参考链接:
https://zhuanlan.zhihu.com/p/672633677
https://discuss.pytorch.org/t/how-to-exit-in-ddp/129583