mp_size = cfg.get('tensor_model_parallel_size', 1) * cfg.get('pipeline_model_parallel_size', 1)
cp_size = cfg.get
TP、PP、DP、集群GPU卡数、grad_accum_steps之间关系【DP=集群中GPU卡总数world_size/(TP*PP)】【grad_accum_steps=gbz/(mbz*DP)】
于 2024-03-24 06:35:39 首次发布
本文深入探讨了在深度学习训练中,Transformer Parallelism (TP), Pipeline Parallelism (PP), Data Parallelism (DP)、集群中的GPU卡数以及grad_accum_steps之间的数学关系。DP可以通过集群中GPU卡总数world_size除以TP和PP的乘积来计算。而grad_accum_steps的计算公式为总梯度步长(gbz)除以微批次大小(mbz)乘以DP。"
124575831,9232316,Qt实现四则运算计算器,"['Qt', '计算机图形学']
摘要由CSDN通过智能技术生成