TP、PP、DP、集群GPU卡数、grad_accum_steps之间关系【DP=集群中GPU卡总数world_size/(TP*PP)】【grad_accum_steps=gbz/(mbz*DP)】

本文深入探讨了在深度学习训练中,Transformer Parallelism (TP), Pipeline Parallelism (PP), Data Parallelism (DP)、集群中的GPU卡数以及grad_accum_steps之间的数学关系。DP可以通过集群中GPU卡总数world_size除以TP和PP的乘积来计算。而grad_accum_steps的计算公式为总梯度步长(gbz)除以微批次大小(mbz)乘以DP。" 124575831,9232316,Qt实现四则运算计算器,"['Qt', '计算机图形学']
摘要由CSDN通过智能技术生成
mp_size = cfg.get('tensor_model_parallel_size', 1) * cfg.get('pipeline_model_parallel_size', 1)
cp_size = cfg.get
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值