MTR论文阅读

https://blog.csdn.net/qq_41897558/article/details/140174471

文章主要亮点:

  1. 模型输入有agent和map,形式与vectornet类似,但是提出了使用pointnet进行编码
  2. 使用局部编码,使用k邻近算法进行筛选,然后进行MHSA
  3. 对预测轨迹进行初步解码之后再编码,对未来的轨迹进行交互建模
  4. 采用两种类型的查询对运动预测进行建模,将全局意图定位(静态intention)和局部运动细化(动态intention)进行联合优化。 它不仅可以通过特定于模式的运动查询对来稳定训练,还可以通过迭代收集细粒度的轨迹特征来实现自适应运动细化。
  5. 全局意图定位(静态intention)使用数据集对goal点进行聚类获得
  6. 局部运动细化(动态intention)最开始使用全局意图定位,然后使用迭代解码方式来进行更新,通过迭代收集细粒度的轨迹特征来实现自适应运动细化,使用了refline的方法(将输出encoding, 然后再用相同的decoder进行解码)
  7. 将静态和动态的intention concat作为query, 与agent和map分别做 MHSA, 然后使用MLP出多模态轨迹,用GMM算loss
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值