https://blog.csdn.net/qq_41897558/article/details/140174471
文章主要亮点:
- 模型输入有agent和map,形式与vectornet类似,但是提出了使用pointnet进行编码
- 使用局部编码,使用k邻近算法进行筛选,然后进行MHSA
- 对预测轨迹进行初步解码之后再编码,对未来的轨迹进行交互建模
- 采用两种类型的查询对运动预测进行建模,将全局意图定位(静态intention)和局部运动细化(动态intention)进行联合优化。 它不仅可以通过特定于模式的运动查询对来稳定训练,还可以通过迭代收集细粒度的轨迹特征来实现自适应运动细化。
- 全局意图定位(静态intention)使用数据集对goal点进行聚类获得
- 局部运动细化(动态intention)最开始使用全局意图定位,然后使用迭代解码方式来进行更新,通过迭代收集细粒度的轨迹特征来实现自适应运动细化,使用了refline的方法(将输出encoding, 然后再用相同的decoder进行解码)
- 将静态和动态的intention concat作为query, 与agent和map分别做 MHSA, 然后使用MLP出多模态轨迹,用GMM算loss