pytorch从零开始学习(5)

文章介绍了在PyTorch中进行多分类问题的处理,包括信息熵、交叉熵、KL散度等概念,并详细阐述了交叉熵作为损失函数的原因。通过MNIST数据集的示例,解释了模型训练过程,以及optimizer.zero_grad()、loss.backward()和optimizer.step()在梯度下降中的作用。
摘要由CSDN通过智能技术生成

pytorch从零开始学习5

多分类问题

1. 信息量

信息是用来消除随机不确定性的东西,即衡量信息量的大小就是看这个信息消除不确定性的程度。信息量的大小与信息发生的概率成反比

设某一件事发生的概率为ZZZ,其信息量为
I ( x ) = − l o g ( P ( x ) ) I(x)=-log(P(x)) I(x)=log(P(x))
其中, I ( x ) I(x) I(x)表示信息量

2. 信息熵

信息熵用来表示所有信息量的期望
H ( X ) = − ∑ P ( x i ) l o g ( P ( x i ) ) ( X = x 1 , x 2 , . . . , x n ) H(X)=-\sum P(x_i)log(P(x_i))\\ (X=x_1, x_2,...,x_n) H(X)=P(xi)log(P(xi))(X=x1,x2,...,xn)
对于0-1分布问题,信息熵计算公式
H ( X ) = − ∑ P ( x i ) l o g ( P ( x i ) ) = − P ( x ) l o g ( P ( x ) ) − ( 1 − P ( x ) ) l o g ( 1 − P ( x ) ) H(X)=-\sum P(x_i)log(P(x_i))\\ =-P(x)log(P(x))-(1-P(x))log(1-P(x)) H(X)=P(xi)log(P(xi))=P(x)log(P(x))(1P(x))log(1P(x))

3. 相对熵(KL散度)

用来衡量两个概率分布之间的差异
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) D_{KL}(p||q)=\sum _{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)}) DKL(p∣∣q)=i=1np(xi)log(q(xi)p(xi))
在minist数据集的分类中,0-9的原始分布(预测1)为[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],预测分布[0.1, 0.5, 0.1, 0.05, 0.05, 0.01, 0.09, 0.1, 0.1]

KL散度越小,表示 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X)的分布更接近

4. 交叉熵

D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) q ( x i ) ) = ∑ i = 1 n p ( x i ) l o g ( p ( x i ) ) − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) = − H ( p ( x ) ) + [ − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) ] D_{KL}(p||q)=\sum _{i=1}^np(x_i)log(\frac{p(x_i)}{q(x_i)})\\ =\sum _{i=1}^np(x_i)log(p(x_i))-\sum _{i=1}^np(x_i)log(q(x_i))\\ =-H(p(x))+[-\sum _{i=1}^np(x_i)log(q(x_i))] DKL(p∣∣q)=i=1np(xi)log(q(xi)p(xi))=i=1np(xi)log(p(xi))i=1np(xi)log(q(xi))=H(p(x))+[i=1np(xi)log(q(xi))]

KL散度=交叉撒-信息熵

H ( p , q ) = − ∑ i = 1 n p ( x i ) l o g ( q ( x i ) ) H(p,q)=-\sum _{i=1}^np(x_i)log(q(x_i)) H(p,q)=i=1np(xi)log(q(xi))

交叉熵能够衡量不同概率分布的差异,能够表示真实概率分布与预测概率分布之间的差异。交叉熵的值越小,模型预测效果就越好

5.为什么在多分类问题中使用的损失函数是交叉熵损失

在二分类问题中,使用的是二分类交叉熵损失函数,而在多分类问题中使用的是交叉熵损失。我的理解:

无论是二分类还是多分类,都是从概率分布角度来进行预测。如果在多分类中使用的损失函数和二分类一样,那么会出现问题,例子:一个手写数字分类问题,当使用二分类损失函数时,如果出现,预测为9的概率为0.8,预测为8的概率为0.9,预测为7的概率为0.8,那么模型最终给出的结果为8,此时这个结果正确吗?答案是否定的,因为,为9和7的概率高达0.8这说明了模型很难将他们进行区分。对于损失函数的选择问题,理解不是很深刻,只能说简单的理解。

满足以下两点:

  • 概率大于0
  • 和为1

理解为什么optimizer.zero_grad()不能放在loss.backward()与optimizer.step()中间

因为,step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。所以,如果放在它们中间的话,梯度被清零,没有梯度,也就无法进行梯度更新,参数优化

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim


# -------------------------------------------------------prepare data-------------------------------------------------------
batch_size = 64
# ------------------------------------------------------数据预处理------------------------------------------------------------
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307, ), (0.3081, ))])

train_dataset = datasets.MNIST(root='./data/mnist/', train=True, download=True, transform=transform)

train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='./data/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


# ----------------------------------------------------定义模型---------------------------------------------------------------
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(784, 512)
        self.linear2 = torch.nn.Linear(512, 256)
        self.linear3 = torch.nn.Linear(256, 128)
        self.linear4 = torch.nn.Linear(128, 64)
        self.linear5 = torch.nn.Linear(64, 10)

    def forward(self, x):  # pytorch中输入数据的shape为[N,C,H,W], 分别是batch size,通道数,高度,宽度
        out1 = x.view(-1, 784)  # 相当于numpy中的resize
        out2 = F.relu(self.linear1(out1))
        out3 = F.relu(self.linear2(out2))
        out4 = F.relu(self.linear3(out3))
        out5 = F.relu(self.linear4(out4))
        out6 = self.linear5(out5)  # 最后一层不使用激活函数
        return out6


# ----------------------------------------------------实例化模型--------------------------------------------------------------
model = Model()

# ------------------------------------------------------损失函数与优化器定义---------------------------------------------------
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

# -------------------------------------------将一次epoch单独封装成一个函数------------------------------------------------------
def train(epoch):
    running_loss = 0.0
    # 下面两种放置optimizer.zero_grad()位置均可以,只要不将optimizer.zero_grad()放在loss.backward()与optimizer.step()之间就行

    # for batch_idx, data in enumerate(train_loader, 0):  # enumerate返回(idx,(data,label))
    #     inputs, target = data
    #     pred_data = model(inputs)
    #     loss = criterion(pred_data, target)
    #
    #     optimizer.zero_grad()
    #
    #     loss.backward()
    #     optimizer.step()

    # 我的疑问解惑:train_loader是如何在每次循环中获得相应的batch size dataset(每次循环,这里的train_loader都不同)
    for batch_idx, data in enumerate(train_loader, 0):  # enumerate返回(idx,(data,label))
        inputs, target = data
        optimizer.zero_grad()

        pred_data = model(inputs)

        loss = criterion(pred_data, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:  # 与299比较是因为python计数是从0开始
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))

            # 这里为什么要将running_loss置零--->因为这里running_loss的作用是为了计算每300个样本的损失,
            # 即不是作为一个整体的计算值,甚至可以理解为它“无关紧要”,只是为了用户知道在这几百个样本中损失是多少
            running_loss = 0.0


# ------------------------------------------------将一次测试单独封装成一个函数---------------------------------------------------
def test():
    correct = 0
    total = 0
    with torch.no_grad():  # 不计算梯度,不构建计算图
        for data in test_loader:
            images, labels = data
            pred_data = model(images)
            _, predicted = torch.max(pred_data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

参考资料:理解optimizer.zero_grad(), loss.backward(), optimizer.step()的作用及原理_self.optimizer.step()_潜行隐耀的博客-CSDN博客

09.多分类问题_哔哩哔哩_bilibili

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值