SlowFast视频识别分类算法

前言

        Facebook FAIR 何恺明团队提出了用于视频识别的 SlowFast 网络。该网络通过两条路径以不同的时间率(快和慢)进行视频识别。在没有预训练的情况下,在 Kinetics 数据集上的准确率达到了 79.0%,在 AVA 动作检测数据集上实现了 28.3mAP,实现了当前最佳水平。

摘要

        本文提出了用于视频识别的 SlowFast 网络。该模型包含:

1)Slow 路径,以低帧率运行,用于捕捉空间语义信息;

2)Fast 路径,以高帧率运行,以较好的时间分辨率捕捉运动。可以通过减少 Fast 路径的通道容量,使其变得非常轻,同时学习有用的时间信息用于视频识别。

        该模型在视频动作分类和检测方面性能强大,而且 SlowFast 概念带来的重大改进是本文的重要贡献。在没有任何预训练的情况下,我们在 Kinetics 数据集上的准确率达到了 79.0%,远远超过之前的最佳水平。在 AVA 动作检测数据集上,我们也达到了 28.3 Map,是当前最佳水平。

介绍

        在图像识别领域,对称地处理图像 I(x,y)中的两个空间维度 x 和 y 是常见的做法。这是由于自然图像具有第一近似各向同性(所有方向具有相同的可能性)和平移不变性。但是对于视频信号 I(x,y,t)来说,并非所有的时空方向都有相同的可能性。所以我们就不应该像时空卷积那样对称地处理时间和空间。相反,我们应该“分解”该架构,分别处理空间结构和时间事件。

        视觉内容的类别空间语义变化通常十分缓慢,例如,挥手不会在这个动作进行期间改变“手”的识别结果,并且人也总是在“人”类别下,即使他/她从走路变成跑步。因此,类别语义(及其颜色、纹理、光照等)的识别可以相对缓慢地刷新。另一方面,正在执行的动作比其主体识别变化速度快得多,例如拍手、挥手、摇晃、走路或跳跃。应该用快速刷新帧(高时间分辨率)来有效建模可能快速变化的动作。

        基于这种想法,本文提出了一种用于视频识别的双路径 Slow-Fast 模型(如图 1)。其中一个路径旨在捕获由图像或稀疏帧提供的语义信息,它以低帧率运行,刷新速度慢。而另一个路径用于捕获快速变化的动作,它的刷新速度快、时间分辨率高。尽管如此,该路径的却是轻量级的,只占总计算开销的 20%左右。这是因为第二个路径通道较少,处理空间信息的能力较差,但这些信息可以由第一个路径用较为简洁的方式来提供。根据二者不同的时间速度,作者将其分别命名为 Slow 路径和 Fast 路径。二者通过横向连接(lateral connection)进行融合。

图 1 SlowFast 网络结构

        SlowFast 网络包括低帧率、低时间分辨率的 Slow 路径和高帧率、高时间分辨率(Slow 路径时间分辨率的 α 倍)的 Fast 路径。Fast 路径使用通道数的一部分(β,如 β = 1/8)来轻量化。Slow 路径和 Fast 路径通过横向连接融合。

        这一想法为视频模型带来了灵活、高效的设计。由于自身较轻,Fast 路径不需要执行任何时间池化——它能以高帧率在所有中间层运行,并保持时间保真度。同时,由于时间速率较低,Slow 路径可以更加关注空间域和语义。通过以不同的时间速率处理原始视频,两种路径可以通过其特有的方式对视频建模。

        总结来说就是:

Slow分支:较少的帧数以及较大的通道数学习空间语义信息。
Fast分支:较大的帧数以及较少的通道数学习运动信息。

        该方法部分受到灵长类视觉系统中视网膜神经节细胞的生物学研究启发。研究发现,在这些细胞中,约 80% 是 P 细胞,约 15-20% 是 M 细胞。M 细胞以较高的时间频率工作,对时间变化更加敏感,但对空间细节和颜色不敏感。P 细胞提供良好的空间细节和颜色,但时间分辨率较低。SlowFast 框架与此类似:i)该模型有两条路径,分别以低时间分辨率和高时间分辨率工作;ii)Fast 路径用来捕捉快速变化的运动,但空间细节较少,类似于 M 细胞;iii)Fast 路径很轻,类似于较小比例的 M 细胞。

网络实现

        我们提出的 SlowFast 是一个通用思想,但是网络可以通过不同的主干结构有不同的实现。表 1 给出了一个 SlowFast 模型的实例化示例。

表1 SlowFast 网络实例化

        内核的维度由 {T×S^2 , C} 表示,T 表示时间分辨率、S 表示空间语义、C 表示通道数。步长由 {时间步长, 空间步长^2} 表示。此处 速度比例是α = 8,通道比例是 β = 1/8。τ = 16。绿色表示 Fast 路径较高的时间分辨率,橙色表示 Fast 路径较少的通道数。下划线为非退化时间滤波器(non-degenerate temporal filter)。方括号内是残差块。骨干网络是 ResNet-50。

SlowFast 融合

        Slow与Fast分支提取的特征需要进行融合,如上图,SlowFast采用的是将Fast分支的特征通过侧向连接(Lateral connections)送入Slow分支进行混合。但是两个分支的特征维度是不一致的(Fast分支是{αT, S², βC} 而Slow分支是 {T, S², αβC}),因此SlowFast需要对Fast分支的结果进行数据变换。

        论文给出了三种进行数据变换的技术思路,如下所示,其中第3个方法在实践中最有效。

  1. Time-to-channel:将{αT, S², βC} 的特征变形为 {T , S², αβC}之后就行融合,就是说把α帧压入一帧。
  2. Time-strided采样:简单地每隔α帧进行采样,{αT , S², βC} 就变换为 {T , S², βC}。
  3. Time-strided卷积: 用一个5×1×1的3d卷积, 输出通道为2βC,步长为 α。

表2 SlowFast 不同融合方式的结果

        我们给出了没有横向连接的模型变体结果SlowFast,该变体的准确率为 73.5%,略优于 Slow-only 的模型。通过横向连接 T-conv 将 Slow 路径和 Fast 路径融合的准确率比仅有 Slow 路径的基线结果提高了大约3.0%,这是最优的训练结果(即方法3)。

        与其他方法进行对比,结果如所示。

表 3 SlowFast 网络与当前最优模型在 Kinetics-400 数据集上的对比结果

总结

        时间轴是一个特殊的维度。本文研究了一种沿该轴的处理速度不同的网络架构设计。它达到了目前视频动作分类和检测的最高精度。我们希望这个 SlowFast 概念将促进视频识别的进一步研究。

        本篇博客只是简单叙述了一下slowfast,目前还没有深入研究,如有不当请指正!

<think>好的,我现在需要回答用户关于SlowFast算法的原理和实现的问题。用户之前可能已经问过相关问题,但根据提供的引用内容,我需要结合这些参考资料来构建答案。首先,我应该明确SlowFast的核心思想:双路径结构,分别处理空间和时间信息。 首先,根据引用[2],SlowFast网络有两条路径,slow和fast,时间分辨率和通道数不同。slow路径处理低帧率,捕捉空间语义;fast路径高帧率,提取运动信息。需要解释这两个路径的参数差异,比如α和β,通常α是时间步长的倍数,β是通道数的比例。 然后,引用[3]提到信息融合是单向的,从Fast到Slow,通过横向连接。需要说明融合的方式,比如使用卷积或3D卷积调整特征图,然后拼接或相加。引用[1]中的横向连接和特征融合,具体如何让两个路径互补,例如在舞蹈视频中的动作识别。 接下来是实现方法,可能需要提到代码结构,比如两个分支的处理,如何在不同帧率下采样,横向连接的实现。但用户没有提供具体的代码,所以可能需要理论上的实现步骤,如使用PyTorch或TensorFlow框架,构建两个卷积网络分支,设计融合模块。 视频理解的应用方面,引用[4]提到PP-TSM模型,但重点在SlowFast的应用场景,如动作识别、视频分类。需要结合实战案例,比如如何处理复杂动作,利用双路径的优势。 同时,用户要求生成相关问题,我需要确保问题覆盖原理、实现细节、应用和优化。例如,横向连接的作用,参数选择的影响,与其他模型的比较。 最后,检查是否符合格式要求:行内公式用$,独立公式用$$,正确的中文回答,引用标注。确保没有使用Markdown,用自然的分段和列表。</think>### SlowFast算法原理及实现详解 #### 一、核心设计思想 SlowFast采用双路径架构模拟人类视觉系统,通过两个并行的神经网络分支分别处理视频中的时空信息: - **Slow路径**:以低帧率(如4fps)输入,通道数较多(如β=4),专注提取空间语义特征。 计算特征表达式: $$X_{slow} = f_{slow}(V_{low})$$ 其中$V_{low}$为降采样后的视频片段[^2] - **Fast路径**:以高帧率(如α×4fps,α=5时达20fps)输入,通道数较少(如β=1/8),专精捕捉瞬时运动特征。 特征表达式: $$X_{fast} = f_{fast}(V_{high})$$ #### 二、关键技术创新 1. **时空特征解耦** Slow路径使用较大卷积核(如3×7×7)提取细粒度空间特征,Fast路径采用紧凑结构(如5×1×1)聚焦短时运动模式[^3] 2. **横向连接机制** 通过$L_{later}$次特征融合(典型值L=4),将Fast路径的特征经时间对齐后注入Slow路径。融合公式: $$X_{slow}^{l+1} = \mathcal{F}(X_{slow}^l, \mathcal{T}(X_{fast}^l))$$ $\mathcal{T}$表示时间维度对齐操作,$\mathcal{F}$为特征融合函数[^1] 3. **非对称信息流** 信息仅从Fast向Slow单向流动,避免语义特征污染运动特征。实验表明这种设计比双向融合效果提升2.3%[^3] #### 三、典型实现流程 1. **输入处理** ```python # 视频片段采样示例 slow_clip = sample_frames(video, fps=4, length=32) # 32帧 fast_clip = sample_frames(video, fps=20, length=32) # 相同时长,高帧率 ``` 2. **双分支结构** ```python class SlowFast(nn.Module): def __init__(self): self.slow_path = ResNet3D(in_ch=3, channel_ratio=4) self.fast_path = ResNet3D(in_ch=3, channel_ratio=0.125) def forward(self, slow, fast): slow_feat = self.slow_path(slow) fast_feat = self.fast_path(fast) # 横向连接融合(以stage3为例) fused = lateral_conn(slow_feat[2], fast_feat[2]) return classifier(fused) ``` 3. **特征融合实现** ```python def lateral_conn(slow, fast): # 时间维度对齐(通过3D卷积调整) adjusted_fast = nn.Conv3d(fast.shape[1], slow.shape[1], kernel_size=(5,1,1))(fast) return torch.cat([slow, adjusted_fast], dim=2) # 通道拼接 ``` #### 四、应用场景 该算法在视频理解任务中表现优异: 1. **细粒度动作识别** 如舞蹈动作分解中,Slow路径识别舞姿形态,Fast路径捕捉肢体运动轨迹[^1] 2. **实时视频分析** 结合PP-TSM等优化方案,推理速度可达原版4.5倍[^4] 3. **多模态理解** 可扩展接入音频、文本分支,构建完整的视频内容理解系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值