Measure Theory (3): set functions

Definitions

μ : C → R + ∪ { ∞ } \mu:\mathcal{C}\to\mathbb{R}_+\cup\{\infty\} μ:CR+{}
DEF

  • μ \mu μ is continuous from below at E if ∀ { E i } i ≥ 1 , E i ∈ C , E n ↑ E \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\uparrow E {Ei}i1,EiC,EnE and
    μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E)
  • E n ↑ E E_n\uparrow E EnE means E n ⊆ E n + 1 E_n\subseteq E_{n+1} EnEn+1 and ∪ i ≥ 1 E i = E \cup_{i\ge1}E_i = E i1Ei=E
  • μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E) means μ ( E ) = lim ⁡ n → ∞ μ ( E n ) \mu(E)=\lim_{n\to\infty}\mu(E_n) μ(E)=limnμ(En)
  • μ \mu μ is continuous from above at E if ∀ { E i } i ≥ 1 , E i ∈ C , E n ↓ E ,  and  ∃ n 0 , s . t . μ ( E n 0 ) < ∞ \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\downarrow E, \text{ and } \exists n_0, s.t.\mu(E_{n_0})<\infty {Ei}i1,EiC,EnE, and n0,s.t.μ(En0)< and
    μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E)
  • E n ↓ E E_n\downarrow E EnE means E n ⊇ E n + 1 E_n\supseteq E_{n+1} EnEn+1 and ∩ i ≥ 1 E i = E \cap_{i\ge1}E_i = E i1Ei=E
  • To illustrate the “finiteness starting from some index condition”, consider E n : = [ n , ∞ ) E_n:=[n,\infty) En:=[n,), then E n ↓ ∅ E_n\downarrow\empty En yet μ ( E n ) ↛ 0 \mu(E_n)\nrightarrow0 μ(En)0

LEMMA A \mathscr{A} A is an algebra, μ \mu μ is additive
(1) μ \mu μ is sigma-additive ⇒ μ \Rightarrow\mu μ is continuous
(2) μ \mu μ is continuous from below ⇒ μ \Rightarrow\mu μ is sigma-additive
(3) μ \mu μ is continuous from above at ∅  and finite  ⇒ μ \empty \text { and finite }\Rightarrow\mu  and finite μ is sigma-additive

Proof:
(1) sigma-additive ⇒ \Rightarrow continuous from below: Suppose ∀ { E i } i ≥ 1 , E i ∈ C , E n ↑ E \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\uparrow E {Ei}i1,EiC,EnE, define F n : = E n \ E n − 1 , n ≥ 2 , F 1 : = E 1 F_n:=E_{n}\backslash E_{n-1},n\ge2, F_1:=E_1 Fn:=En\En1,n2,F1:=E1,
then μ ( E ) = μ ( ∑ i ≥ 1 F i ) = ∑ i ≥ 1 μ ( F i ) = lim ⁡ n → ∞ ∑ i = 1 n μ ( F i ) = lim ⁡ n → ∞ μ ( E n ) \mu(E)=\mu(\sum_{i\ge1}F_i)=\sum_{i\ge1}\mu(F_i)=\lim_{n\to\infty}\sum_{i=1}^n \mu(F_i)=\lim_{n\to\infty}\mu(E_n) μ(E)=μ(i1Fi)=i1μ(Fi)=limni=1nμ(Fi)=limnμ(En)

(1) sigma-additive ⇒ \Rightarrow continuous from above: Suppose ∀ { E i } i ≥ 1 , E i ∈ C , E n ↓ E , μ ( E n 0 ) < ∞ \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\downarrow E,\mu(E_{n_0})<\infty {Ei}i1,EiC,EnE,μ(En0)<
Define G 1 : = E n 0 \ E n 0 + 1 G_1:=E_{n_0}\backslash E_{n_0+1} G1:=En0\En0+1
G k : = E n 0 \ E n 0 + k G_k:=E_{n_0}\backslash E_{n_0+k} Gk:=En0\En0+k
∴ G k ↑ E n 0 \ E \therefore G_k\uparrow E_{n_0}\backslash E GkEn0\E
∴ μ ( G k ) → μ ( E n 0 \ E ) \therefore \mu(G_k)\to\mu(E_{n_0}\backslash E) μ(Gk)μ(En0\E) by continuous from below
So μ ( E n 0 \ E ) = lim ⁡ k → ∞ μ ( E n 0 \ E n 0 + k ) = lim ⁡ k → ∞ μ ( E n 0 ) − μ ( E n 0 + k ) \mu(E_{n_0}\backslash E)=\lim_{k\to\infty}\mu(E_{n_0}\backslash E_{n_0+k}) = \lim_{k\to\infty}\mu(E_{n_0}) - \mu( E_{n_0+k}) μ(En0\E)=limkμ(En0\En0+k)=limkμ(En0)μ(En0+k)

(2): ⇒ μ \Rightarrow\mu μ continuous from below ⇒ μ \Rightarrow\mu μ is sigma-additive
Let E = ∑ i ≥ 1 E i , E , E k ∈ A E = \sum_{i\ge1}E_i, E, E_k \in\mathscr{A} E=i1Ei,E,EkA
Observe that μ ( ∑ i = 1 n E i ) = ∑ i = 1 n μ ( E i ) ≤ μ ( E ) \mu(\sum_{i=1}^nE_i)=\sum_{i=1}^n\mu(E_i)\le\mu(E) μ(i=1nEi)=i=1nμ(Ei)μ(E) so ∑ i ≥ 1 μ ( E i ) ≤ μ ( E ) \sum_{i\ge1}\mu(E_i)\le\mu(E) i1μ(Ei)μ(E) (This holds by additivity)
Let F n = ∑ k = 1 n E i F_n=\sum_{k=1}^nE_i Fn=k=1nEi, then F n ↑ E F_n\uparrow E FnE, by continuous from below, μ ( F n ) ↑ μ ( E ) \mu(F_n)\uparrow \mu(E) μ(Fn)μ(E).
That is μ ( E ) = lim ⁡ n → ∞ μ ( F n ) = lim ⁡ n → ∞ ∑ i = 1 n μ ( E i ) = ∑ i ≥ 1 μ ( E i ) \mu(E)=\lim_{n\to\infty}\mu(F_n)=\lim_{n\to\infty}\sum_{i=1}^n\mu(E_i)=\sum_{i\ge1}\mu(E_i) μ(E)=limnμ(Fn)=limni=1nμ(Ei)=i1μ(Ei) Thus proved the sigma additivity

(3): μ \mu μ is continuous from above at ∅  and finite  ⇒ μ \empty \text { and finite }\Rightarrow\mu  and finite μ is sigma-additive
Proof: μ \mu μ continuous from above at ∅ \empty , μ ( Ω ) < ∞ \mu(\Omega) <\infty μ(Ω)<
Consider E = ∑ i ≥ 1 E i , E , E k ∈ A E = \sum_{i\ge1}E_i, E, E_k \in\mathscr{A} E=i1Ei,E,EkA
Let F n = ∑ i ≥ n E i ∈ A F_n=\sum_{i\ge n}E_i \in\mathscr{A} Fn=inEiA as F n = E \ ( ∑ i = 1 n − 1 E i ) F_n=E\backslash(\sum_{i=1}^{n-1}E_i) Fn=E\(i=1n1Ei)
Since F n ↓ ∅ , μ ( F i ) < ∞ F_n\downarrow\empty, \mu(F_i)<\infty Fn,μ(Fi)< So μ ( F n ) → 0 \mu(F_n)\to0 μ(Fn)0
μ ( E ) = μ ( ∑ k = 1 n E k ∪ ∑ k > n E k ) = ∑ k = 1 n μ ( E k ) + μ ( F n + 1 ) \mu(E)=\mu(\sum_{k=1}^n E_k \cup \sum_{k>n}E_k)=\sum_{k=1}^n\mu(E_k) +\mu(F_{n+1}) μ(E)=μ(k=1nEkk>nEk)=k=1nμ(Ek)+μ(Fn+1) Take limit we get sigma additivity.

Example: Ω = ( 0 , 1 ) ,  element in alebra is of the form  ( a , b ] , 0 ≤ a < b < 1 \Omega=(0,1), \text{ element in alebra is of the form }(a,b], 0\le a<b<1 Ω=(0,1), element in alebra is of the form (a,b],0a<b<1
Define μ ( ( a , b ] ) = ∞  if  a = 0  else  b − a \mu((a,b]) = \infty \text{ if } a=0 \text{ else } b-a μ((a,b])= if a=0 else ba, we have seen μ \mu μ is additive yet not sigma-additive.
39:30 这个example想说明什么?
Why NOT sigma-additive? Because it is NOT finite!
It is not continuous from above. Consider E n ↓ ∅ E_n\downarrow \empty En, E n = ( a n , 1 , b n , 1 ] ∪ ( a n , 2 , b n , 2 ] ∪ . . . ∪ ( a n , k , b n , k ] E_n=(a_{n,1}, b_{n,1}]\cup(a_{n,2}, b_{n,2}]\cup...\cup(a_{n,k}, b_{n,k}] En=(an,1,bn,1](an,2,bn,2]...(an,k,bn,k] with a n , j < a n , j + 1 a_{n,j}<a_{n,j+1} an,j<an,j+1. Then if
(1) a m , 1 > 0 , ∃ m a_{m,1} > 0,\exists m am,1>0,m then μ \mu μ is sigma-additive;
(2) a m , 1 = 0 , ∀ m a_{m,1} = 0,\forall m am,1=0,m

Extension

THM1
S ⊂ S ( Ω ) , μ : S → R + ∪ { ∞ } \mathscr{S}\subset\mathcal{S}(\Omega), \mu:\mathscr{S}\to\mathbb{R}_+\cup\{\infty\} SS(Ω),μ:SR+{} additive
Then ∃ ν : a ( S ) → R + ∪ { ∞ } \exists\nu:a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} ν:a(S)R+{}, algebra generated by the semi-algebra, such that ν \nu ν is:

  1. Additive
  2. ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS
  3. If μ 1 , μ 2 : a ( S ) → R + ∪ { ∞ } \mu_1,\mu_2: a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} μ1,μ2:a(S)R+{} and μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ S  and  μ 1 , μ 2  additive  ⇒ μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ a ( S ) \mu_1(A)=\mu_2(A),\forall A\in\mathscr{S} \text{ and } \mu_1,\mu_2 \text{ additive }\Rightarrow\mu_1(A)=\mu_2(A), \forall A\in a(\mathscr{S}) μ1(A)=μ2(A),AS and μ1,μ2 additive μ1(A)=μ2(A),Aa(S)

Proof: If A ∈ a ( S ) A\in a(\mathscr{S}) Aa(S), algebra generated by semi-algebra, then A = ∑ j = 1 n E j , E j ∈ S A=\sum_{j=1}^nE_j, E_j\in\mathscr{S} A=j=1nEj,EjS [Remark: this is a special property of algebra generated by semi-algebra]
Define ν ( A ) : = ∑ j = 1 n μ ( E j ) \nu(A):=\sum_{j=1}^n\mu(E_j) ν(A):=j=1nμ(Ej) (Because we want ν ( A ) = a d d ∑ j = 1 n ν ( E j ) = e x t e n s i o n ∑ j = 1 n μ ( E j ) \nu(A)=^{add}\sum_{j=1}^n\nu(E_j)=^{extension} \sum_{j=1}^n\mu(E_j) ν(A)=addj=1nν(Ej)=extensionj=1nμ(Ej)

Assertion: 1) ν \nu ν is well-defined 2) ν \nu ν is additive 3) ν \nu ν is unique
For 1): (If A has two representation, does ν \nu ν give the same output?)
If A = ∑ j = 1 n E j = ∑ k = 1 m F k , E j , F k ∈ S A=\sum_{j=1}^nE_j=\sum_{k=1}^mF_k, E_j, F_k\in\mathscr{S} A=j=1nEj=k=1mFk,Ej,FkS
E j ⊆ A = ∑ k = 1 m F k E_j\subseteq A=\sum_{k=1}^mF_k EjA=k=1mFk so E j = E j ∩ ∑ k = 1 m F k = ∑ k = 1 m E j ∩ F k E_j = E_j\cap\sum_{k=1}^mF_k=\sum_{k=1}^m E_j\cap F_k Ej=Ejk=1mFk=k=1mEjFk
So μ ( E j ) = ∑ k = 1 m μ ( E j ∩ F k ) \mu(E_j)=\sum_{k=1}^m \mu(E_j\cap F_k) μ(Ej)=k=1mμ(EjFk)
Therefore, ν ( A ) = ∑ j = 1 n μ ( E j ) = ∑ j = 1 n ∑ k = 1 m μ ( E j ∩ F k ) = s i m i l a r l y ∑ k = 1 m μ ( F k ) \nu(A)=\sum_{j=1}^n \mu(E_j)=\sum_{j=1}^n \sum_{k=1}^m \mu(E_j\cap F_k) =^{similarly}\sum_{k=1}^m \mu(F_k) ν(A)=j=1nμ(Ej)=j=1nk=1mμ(EjFk)=similarlyk=1mμ(Fk)
For 2): If A = ∑ j = 1 m E j , B = ∑ k = 1 m F k A=\sum_{j=1}^m E_j, B=\sum_{k=1}^m F_k A=j=1mEj,B=k=1mFk, where E j , F k ∈ S E_j, F_k\in\mathscr{S} Ej,FkS and A ∩ B = ∅ A\cap B=\empty AB= want to show ν ( A ∪ B ) = ν ( A ) + ν ( B ) \nu(A\cup B)=\nu(A) + \nu(B) ν(AB)=ν(A)+ν(B) [follows from definition]
Also, need to show ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS. [Note A = A , A ∈ S A=A, A\in \mathscr{S} A=A,AS]
For 3): (Uniqueness) ∀ B ∈ a ( S ) \forall B\in a(\mathscr{S}) Ba(S), so B = ∑ j = 1 n E j , E j ∈ S B=\sum_{j=1}^n E_j, E_j\in\mathscr{S} B=j=1nEj,EjS.
μ 1 ( B ) = ∑ j = 1 n μ 1 ( E j ) = ∑ j = 1 n μ 2 ( E j ) = μ 2 ( B ) \mu_1(B)=\sum_{j=1}^n\mu_1(E_j)=\sum_{j=1}^n\mu_2(E_j)=\mu_2(B) μ1(B)=j=1nμ1(Ej)=j=1nμ2(Ej)=μ2(B)

THM2
S ⊂ S ( Ω ) , μ : S → R + ∪ { ∞ } \mathscr{S}\subset\mathcal{S}(\Omega), \mu:\mathscr{S}\to\mathbb{R}_+\cup\{\infty\} SS(Ω),μ:SR+{} σ \sigma σ-additive
Then ∃ ν : a ( S ) → R + ∪ { ∞ } \exists\nu:a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} ν:a(S)R+{}, algebra generated by the semi-algebra, such that ν \nu ν is:

  1. σ \sigma σ-additive
  2. ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS
  3. If μ 1 , μ 2 : a ( S ) → R + ∪ { ∞ } \mu_1,\mu_2: a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} μ1,μ2:a(S)R+{} and μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ S  and  μ 1 , μ 2 , σ -additive  ⇒ μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ a ( S ) \mu_1(A)=\mu_2(A),\forall A\in\mathscr{S} \text{ and } \mu_1,\mu_2, \sigma\text{-additive }\Rightarrow\mu_1(A)=\mu_2(A), \forall A\in a(\mathscr{S}) μ1(A)=μ2(A),AS and μ1,μ2,σ-additive μ1(A)=μ2(A),Aa(S)

A = ∑ j ≥ 1 A j , A , A j ∈ A ( S ) A=\sum_{j\ge1}A_j, A, A_j \in \mathcal{A}(\mathscr{S}) A=j1Aj,A,AjA(S)
WTS ν ( A ) = ∑ j ≥ 1 ν ( A j ) \nu(A)=\sum_{j\ge1}\nu(A_j) ν(A)=j1ν(Aj)
By property, A = ∑ j = 1 n E j , E j ∈ S A=\sum_{j=1}^nE_j, E_j\in\mathscr{S} A=j=1nEj,EjS
Also A k = ∑ l = 1 m k E k , l , E k , l ∈ S A_k=\sum_{l=1}^{m_k}E_{k,l}, E_{k,l}\in \mathscr{S} Ak=l=1mkEk,l,Ek,lS.
by def ν ( A ) = ∑ j = 1 n μ ( E j ) \nu(A)=\sum_{j=1}^n\mu(E_j) ν(A)=j=1nμ(Ej)
E j = E j ∩ A = E j ∩ ( ∑ k ≥ 1 A k ) = E j ∩ ( ∑ k ≥ 1 ∑ l = 1 m k E k , l ) = ∑ k ≥ 1 ∑ l = 1 m k E j ∩ E k , l E_j=E_j\cap A= E_j\cap (\sum_{k\ge1}A_k) = E_j\cap (\sum_{k\ge1}\sum_{l=1}^{m_k}E_{k,l} ) = \sum_{k\ge1}\sum_{l=1}^{m_k} E_j\cap E_{k,l} Ej=EjA=Ej(k1Ak)=Ej(k1l=1mkEk,l)=k1l=1mkEjEk,l
By σ \sigma σ-additive of μ \mu μ, μ ( E j ) = ∑ k ≥ 1 ∑ l = 1 m k μ ( E j ∩ E k , l ) \mu(E_j)= \sum_{k\ge1}\sum_{l=1}^{m_k} \mu(E_j\cap E_{k,l}) μ(Ej)=k1l=1mkμ(EjEk,l)
Therefore, ν ( A ) = ∑ j = 1 n μ ( E j ) = ∑ j = 1 n ∑ k ≥ 1 ∑ l = 1 m k μ ( E j ∩ E k , l ) \nu(A)=\sum_{j=1}^n\mu(E_j) =\sum_{j=1}^n \sum_{k\ge1}\sum_{l=1}^{m_k} \mu(E_j\cap E_{k,l}) ν(A)=j=1nμ(Ej)=j=1nk1l=1mkμ(EjEk,l)
Note ν ( A k ) = ∑ l = 1 m k μ ( E k , l ) \nu(A_k) = \sum_{l=1}^{m_k}\mu(E_{k,l}) ν(Ak)=l=1mkμ(Ek,l)
E k , l = E k , l ∩ A = ∪ j = 1 n E k , l ∩ E j E_{k,l} = E_{k,l}\cap A =\cup_{j=1}^n E_{k,l}\cap E_j Ek,l=Ek,lA=j=1nEk,lEj
So μ ( E k , l ) = ∪ j = 1 n μ ( E k , l ∩ E j ) \mu(E_{k,l}) =\cup_{j=1}^n \mu(E_{k,l}\cap E_j) μ(Ek,l)=j=1nμ(Ek,lEj)
So ν ( A ) = ∑ k ≥ 1 ∑ l = 1 m k μ ( E k , l ) = ∑ k ≥ 1 ν ( A k ) \nu(A) = \sum_{k\ge1}\sum_{l=1}^{m_k}\mu(E_{k,l})=\sum_{k\ge1}\nu(A_k) ν(A)=k1l=1mkμ(Ek,l)=k1ν(Ak)

在数学领域,测度论是研究集合上的测度及其性质的一个分支。测度论的发展与数学中对集合的测量概念的深入研究和严格定义密不可分。 测度论的研究主要聚焦于如何给定一个集合上的“大小”的概念,即测度。这种测度可以用来衡量集合的长度、面积、体积等特征。 测度论的一个重要概念是可测集。一个可测集是指在给定的测度空间中,它的测度可以准确地计算出来。而不可测集则是指不能直接计算出其测度的集合。 为了更好地描述可测集,测度论引入了σ-代数的概念。σ-代数是一个集合的代数结构,它包含了这个集合中与测度相关的一些特性。对于一个测度空间中的集合,如果它满足σ-代数的条件,那么它就是一个可测集。 在测度论中还引入了测度的性质和测度的扩张等概念。测度的性质是指测度函数应当满足的一些基本规则,例如非负性、可加性等。而测度的扩张是指在一个给定的集合上,如何将测度函数扩展到包含更多集合的σ-代数上。 测度论在实际中具有广泛的应用,特别是在概率论、积分论以及函数分析等领域。它为这些领域提供了严格的数学工具和方法,使得这些领域的理论和实践更加严密和精确。 总而言之,测度论作为数学的一个重要分支,研究了集合上的测度以及其性质和应用。通过测度论的研究,我们可以更好地衡量和比较集合的大小,从而为数学的其他领域提供了基础和支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值