Asset Pricing:Expected Utility Theory

Asset Pricing:Expected Utility Theory

Theorem 1(Represention Theorem):Suppose the preference ordering is :

  1. complete
  2. transitive
  3. continuous

then the preference ordering can be represented by a utility function, that is, c ≻ c ′ c\succ c' cc iff ∃ u ( ⋅ ) , s . t .   u ( c ) > u ( c ′ ) \exist u(·),s.t.\ u(c)>u(c') u(),s.t. u(c)>u(c)​​.

经典的效用函数表示定理

Expected Utility (冯诺依曼——摩根斯坦):

We define the (finite) set of outcomes X X X and we define a lottery as a probability measure over X X X, that is a function p : X ∈ [ 0 , 1 ] p:X\in[0,1] p:X[0,1] such that

  1. for x ∈ X , p ( x ) ≥ 0 x\in X,p(x)\geq0 xX,p(x)0
  2. ∑ x ∈ X p ( x ) = 1 \sum_{x\in X}p(x)=1 xXp(x)=1

The set of all possible lotteries is:
P ≡ { p : X → [ 0 , 1 ] ∣ ∀ x ∈ X , p ( x ) ≥ 0 , ∑ x ∈ X p ( x ) = 1 } P\equiv\{p:X\to[0,1]|\forall x\in X,p(x)\geq0,\sum_{x\in X}p(x)=1\} P{p:X[0,1]xX,p(x)0,xXp(x)=1}
Assume there exists a preference relation ≻ \succ ​ over P.

Von Neumann - Morgenstern Axioms:

  1. Regularity: preference ≻ \succ is complete and transitive
  2. Independence: For any p , q , r ∈ P , α ∈ [ 0 , 1 ] , p ⪰ q ⇔ α p + ( 1 − α ) r ⪰ α q + ( 1 − α ) r p,q,r\in P,\alpha\in[0,1],p\succeq q\Leftrightarrow \alpha p+(1-\alpha)r\succeq \alpha q+(1-\alpha)r p,q,rP,α[0,1],pqαp+(1α)rαq+(1α)r
  3. Continuity: For any p , q , r ∈ P p,q,r\in P p,q,rP​ , if p ≻ q ≻ r , ∃ α , β ∈ ( 0 , 1 ) , s . t .   α p + ( 1 − α ) r > q > β p + ( 1 − β ) r p\succ q\succ r,\exist\alpha,\beta\in(0,1),s.t.\ \alpha p+(1-\alpha)r>q>\beta p+(1-\beta)r pqr,α,β(0,1),s.t. αp+(1α)r>q>βp+(1β)r​​

Theorem (Expected Utility Representation):If a preference relation ≻ \succ over P P P satisfies the Regularity, Independence and Continuity axioms, then there exists a function u u u : X → R X\to\mathbb R XR​ such that
p ⪰ q ⇔ ∑ x ∈ X p ( x ) u ( x ) ≥ ∑ x ∈ X q ( x ) u ( x ) p\succeq q\Leftrightarrow\sum_{x\in X}p(x)u(x)\geq\sum_{x\in X}q(x)u(x) pqxXp(x)u(x)xXq(x)u(x)

Risk Aversion, Concavity, Certainty Equivalent

Consider a lottery p p p with possible outcomes x 0 < x 1 x_0<x_1 x0<x1.

Certainty Equivalent: the certain payoff which gives the same expected utility as the uncertain lottery p p p.

If E [ u ( x ) ] → \mathbb E[u(x)]\to E[u(x)] expected utility of lottery p p p, then u − 1 ( E [ u ( x ) ] ) → u^{-1}(\mathbb E[u(x)])\to u1(E[u(x)]) CE of p p p.

suppose that the agent is risk-averse: u − 1 ( E [ u ( x ) ] ) < E [ x ] ⇔ u ( ⋅ ) u^{-1}(\mathbb E[u(x)])<\mathbb E[x]\Leftrightarrow u(·) u1(E[u(x)])<E[x]u()​ is concave, because:
u − 1 ( E [ u ( x ) ] ) < E [ x ] E [ u ( x ) ] < u ( E [ x ] ) u^{-1}(\mathbb E[u(x)])<\mathbb E[x]\\\mathbb E[u(x)]<u(\mathbb E[x]) u1(E[u(x)])<E[x]E[u(x)]<u(E[x])

the difference E [ x ] − u − 1 ( E [ u ( x ) ] ) \mathbb E[x]-u^{-1}(\mathbb E[u(x)]) E[x]u1(E[u(x)])​​ is called Risk Premium.

Risk Aversion : u − 1 ( E [ u ( x ) ] ) < E ( x ) u^{-1}(\mathbb E[u(x)])<\mathbb E(x) u1(E[u(x)])<E(x)

Risk loving : u − 1 ( E [ u ( x ) ] ) > E ( x ) u^{-1}(\mathbb E[u(x)])>\mathbb E(x) u1(E[u(x)])>E(x)

Risk neutral : u − 1 ( E [ u ( x ) ] ) = E ( x ) u^{-1}(\mathbb E[u(x)])=\mathbb E(x) u1(E[u(x)])=E(x)

Risk-Attitude ⇔ \Leftrightarrow ​ concavity of u ( ⋅ ) u(·) u()

Theorem 1: Let F A F_A FA​ and F B F_B FB​ be two CDFs for the random payoffs x ∈ [ a , b ] x\in[a, b] x[a,b]​. Then F A F_A FA​ FOSD F B F_B FB​ if and only if E A [ U ( x ) ] ≥ E B [ U ( x ) ] \mathbb E_A[U(x)]\geq\mathbb E_B[U(x)] EA[U(x)]EB[U(x)]​ for all nondecreasing utility functions U ( ⋅ ) U(·) U()​​​.

Theorem 2: Let F A F_A FA​ and F B F_B FB​ be two CDFs for the random payoffs x ∈ [ a , b ] x\in[a, b] x[a,b]​. Then F A F_A FA​ SOSD F B F_B FB​ if and only if E A [ U ( x ) ] ≥ E B [ U ( x ) ] \mathbb E_A[U(x)]\geq\mathbb E_B[U(x)] EA[U(x)]EB[U(x)]​ for all nondecreasing and concave utility functions U ( ⋅ ) U(·) U()​.

  1. 经典效用函数理论:suppose U ( c ) = U ( c 0 , c 1 , ⋯   , c S ) U(c)=U(c_0,c_1,\cdots,c_S) U(c)=U(c0,c1,,cS)​ represent a complete, transitive and continuous preference ordering between consumption profiles. Then also V ( c ) = f ( U ( c ) ) V(c)=f(U(c)) V(c)=f(U(c)), for f f f strictly increasing, represents the same preference ordering.
  2. Expected Utility function:suppose that E [ u ( c ) ] \mathbb E[u(c)] E[u(c)]​ represents a preference ordering satisfying the Von Neumann-Morgenstern axioms. Then for a , b ∈ R a,b\in\mathbb R a,bR​ the affine function v ( c ) = a + b u ( c ) v(c)=a+bu(c) v(c)=a+bu(c)​ , E [ u ( c ) ] \mathbb E[u(c)] E[u(c)]​ and E [ v ( c ) ] \mathbb E[v(c)] E[v(c)]​ represent the same preference ordering.

Measures of Risk Aversion

  1. Absolute Risk Aversion: R A ( Y ) = − u ′ ′ ( Y ) u ′ ( Y ) R_A(Y)=-\dfrac{u''(Y)}{u'(Y)} RA(Y)=u(Y)u(Y)​​
  2. Relative Risk Aversion: R R ( Y ) = − Y u ′ ′ ( Y ) u ′ ( Y ) = Y ⋅ R A ( Y ) R_R(Y)=-Y\dfrac{u''(Y)}{u'(Y)}=Y·R_A(Y) RR(Y)=Yu(Y)u(Y)=YRA(Y)
  3. Risk Tolerance: R T ( Y ) = 1 R A ( Y ) R_T(Y)=\dfrac{1}{R_A(Y)} RT(Y)=RA(Y)1

two specific functional forms for the Von Neumann-Morgenstern function U U U

  1. Constant Absolute Risk Aversion (CARA) utility function U ( x ) = − e ρ x , ρ > 0 U(x)=-e^{\rho x},\rho>0 U(x)=eρx,ρ>0
  2. Constant Relative Risk Aversion (CRRA) utility function U ( x ) = { x 1 − γ 1 − γ , i f   γ ≠ 1 ln ⁡ x , i f   γ = 1 U(x)=\begin{cases}\dfrac{x^{1-\gamma}}{1-\gamma},if\ \gamma\neq1\\\ln x,if\ \gamma=1\end{cases} U(x)=1γx1γ,if γ=1lnx,if γ=1

Risk Aversion and Portfolio Allocation

Assume two assets, one is risky with random net return r r r​ , one is risk-free with net return r f r^f rf​ , Initial wealth is Y 0 Y_0 Y0​ .We want to maximize the expected utility by choosing the risky asset allocation parameter a ∈ R a\in R aR
max ⁡ a ∈ R E [ U ( Y 0 ( 1 + r f ) + a ( r − r f ) ) ] \max_{a\in R}E[U(Y_0(1+r^f)+a(r-r^f))] aRmaxE[U(Y0(1+rf)+a(rrf))]
FOC:
E [ U ′ ( Y 0 ( 1 + r f ) + a ( r − r f ) ) ( r − r f ) ] = 0 E[U'(Y_0(1+r^f)+a(r-r^f))(r-r^f)]=0 E[U(Y0(1+rf)+a(rrf))(rrf)]=0
We can characterize the solution to the problem with the following theorem:

Theorem : assume U ′ > 0 , U ′ ′ < 0 U'>0,U''<0 U>0,U<0 and let a ^ \hat a a^ denote the solution to the problem above. Then :
a ^ > 0 ⇔ E [ r ] > r f a ^ = 0 ⇔ E [ r ] = r f a ^ < 0 ⇔ E [ r ] < r f \hat a>0\Leftrightarrow \mathbb{E}[r]>r^f\\\hat a=0\Leftrightarrow \mathbb{E}[r]=r^f\\\hat a<0\Leftrightarrow \mathbb{E}[r]<r^f a^>0E[r]>rfa^=0E[r]=rfa^<0E[r]<rf

proof : define W ( a ) ≡ E [ U ( Y 0 ( 1 + r f ) + a ( r − r f ) ) ] W(a)\equiv\mathbb{E}[U(Y_0(1+r^f)+a(r-r^f))] W(a)E[U(Y0(1+rf)+a(rrf))], then FOC → \to W ′ ( a ) = 0 W'(a)=0 W(a)=0

risk aversion → U ′ > 0 , U ′ ′ < 0 → W ′ ′ ( a ) = E [ U ′ ′ ( Y 0 ( 1 + r f ) + a ( r − r f ) ) ( r − r f ) 2 ] < 0 \to U'>0,U''<0\to W''(a)=E[U''(Y_0(1+r^f)+a(r-r^f))(r-r^f)^2]<0 U>0,U<0W(a)=E[U(Y0(1+rf)+a(rrf))(rrf)2]<0

so W ′ ( a ) W'(a) W(a)​​ is everywhere decreasing in a a a.

So a ^ > 0 \hat a>0 a^>0 iff W ′ ( 0 ) > 0 W'(0)>0 W(0)>0, since U ′ > 0 U'>0 U>0 if follows that a ^ > 0 \hat a>0 a^>0 iff E [ r ] > r f \mathbb E[r]>r^f E[r]>rf.

其他证明类似。

Arrow’s theorem :

Theorem 1 : Let a ^ = a ^ ( Y 0 ) \hat a=\hat a(Y_0) a^=a^(Y0)​ be the solution to the problem above, then :
∂ R A ∂ Y 0 < 0 → ∂ a ^ ∂ Y 0 > 0 ∂ R A ∂ Y 0 = 0 → ∂ a ^ ∂ Y 0 = 0 ∂ R A ∂ Y 0 > 0 → ∂ a ^ ∂ Y 0 < 0 \frac{\partial R_A}{\partial Y_0}<0\to\frac{\partial\hat a}{\partial Y_0}>0\\\frac{\partial R_A}{\partial Y_0}=0\to\frac{\partial\hat a}{\partial Y_0}=0\\\frac{\partial R_A}{\partial Y_0}>0\to\frac{\partial\hat a}{\partial Y_0}<0 Y0RA<0Y0a^>0Y0RA=0Y0a^=0Y0RA>0Y0a^<0

Theorem 2 : If , for all wealth levels Y Y Y :
∂ R R ∂ Y 0 < 0 → d a / a d Y / Y > 1 ∂ R R ∂ Y 0 = 0 → d a / a d Y / Y = 1 ∂ R R ∂ Y 0 > 0 → d a / a d Y / Y < 1 \frac{\partial R_R}{\partial Y_0}<0\to\frac{da/a}{dY/Y}>1\\\frac{\partial R_R}{\partial Y_0}=0\to\frac{da/a}{dY/Y}=1\\\frac{\partial R_R}{\partial Y_0}>0\to\frac{da/a}{dY/Y}<1 Y0RR<0dY/Yda/a>1Y0RR=0dY/Yda/a=1Y0RR>0dY/Yda/a<1

In the special case U ( Y ) = ln ⁡ Y U(Y)=\ln Y U(Y)=lnY​ the FOC is
E [ r − r f Y 0 ( 1 + r f ) + a ( r − r f ) ] = 0 \mathbb{E}[\frac{r-r^f}{Y_0(1+r^f)+a(r-r^f)}]=0 E[Y0(1+rf)+a(rrf)rrf]=0
assuming that r r r​​ can take on two possible values r 1 , r 2 , r 1 < r f < r 2 r_1,r_2,r_1<r^f<r_2 r1,r2,r1<rf<r2​​, it is possible to show that :
a Y 0 = ( 1 + r f ) ( E [ r ] − r f ) ( r 2 − r f ) ( r f − r 1 ) > 0 \frac{a}{Y_0}=\frac{(1+r^f)(E[r]-r^f)}{(r_2-r^f)(r^f-r_1)}>0 Y0a=(r2rf)(rfr1)(1+rf)(E[r]rf)>0

Theorem (Cass and Stiglitz): Let the vector
[ a ^ 1 ( Y 0 ) ⋮ a ^ J ( Y 0 ) ] \left[\begin{matrix}\hat a_1(Y_0)\\\vdots\\\hat a_J(Y_0)\end{matrix}\right] a^1(Y0)a^J(Y0)
denote the amount optimally invested in the J J J risky assets if the initial wealth is Y 0 Y_0 Y0​, then:
[ a ^ 1 ( Y 0 ) ⋮ a ^ J ( Y 0 ) ] = [ a ^ 1 ⋮ a ^ J ] ⋅ f ( Y 0 ) \left[\begin{matrix}\hat a_1(Y_0)\\\vdots\\\hat a_J(Y_0)\end{matrix}\right]=\left[\begin{matrix}\hat a_1\\\vdots\\\hat a_J\end{matrix}\right]·f(Y_0) a^1(Y0)a^J(Y0)=a^1a^Jf(Y0)
if and only if either i) U ′ ( Y 0 ) = ( θ Y 0 + k ) Δ U'(Y_0)=(\theta Y_0+k)^{\Delta} U(Y0)=(θY0+k)Δ or ii) U ′ ( Y 0 ) = ξ e − v Y 0 U'(Y_0)=\xi e^{-vY_0} U(Y0)=ξevY0

To conclude this subsection, we generalize the class of utility functions by starting from the absolute risk aversion (and then backing out the resulting utility function).

We call linear risk tolerance (or hyperbolic risk aversion) any utility function such that
R A = − u ′ ′ ( c ) u ′ ( c ) = 1 A + B ⋅ c R_A=-\frac{u''(c)}{u'(c)}=\frac{1}{A+B·c} RA=u(c)u(c)=A+Bc1
Clearly, for B = 0 B=0 B=0 and A ≠ 0 A\neq0 A=0 we have a CARA utility function. If B ≠ 0 B\neq0 B=0​​ we obtain a generalized power function
u ( c ) = 1 B − 1 ( A + B ⋅ c ) B − 1 B u(c)=\frac{1}{B-1}(A+B·c)^{\dfrac{B-1}{B}} u(c)=B11(A+Bc)BB1

if B → 1 B\to1 B1​ :(洛必达)
u ( c ) = lim ⁡ B → 1 ( A + B ⋅ c ) B − 1 B B − 1 = lim ⁡ B → 1 ( A + B ⋅ c ) B − 1 B ln ⁡ ( A + B ⋅ c ) 1 = ln ⁡ ( A + B ⋅ c ) u(c)=\lim_{B\to1}\frac{(A+B·c)^{\dfrac{B-1}{B}}}{B-1}\\=\lim_{B\to1}\frac{(A+B·c)^{\dfrac{B-1}{B}}\ln(A+B·c)}{1}\\=\ln(A+B·c) u(c)=B1limB1(A+Bc)BB1=B1lim1(A+Bc)BB1ln(A+Bc)=ln(A+Bc)
for B = − 1 B=-1 B=1​​ we obtain quadratic utility − 1 2 ( A − c ) 2 -\frac{1}{2}(A-c)^2 21(Ac)2​​, and for A = 0 A=0 A=0​​ we obtain the CRRA utility function u ( c ) = 1 B − 1 ( B ⋅ c ) B − 1 B u(c)=\frac{1}{B-1}(B·c)^{\dfrac{B-1}{B}} u(c)=B11(Bc)BB1​​.

Savings

Let’s jump forward a little and suppose that in a multi-period setting agents maximize the expected utility :
E 0 [ ∑ t = 0 ∞ β t u ( c t ) ] \mathbb E_0[\sum_{t=0}^\infty\beta^tu(c_t)] E0[t=0βtu(ct)]
subject to the intertemporal budget constraint
c t + 1 = e t + 1 + ( 1 + r ) ( e t − c t ) c_{t+1}=e_{t+1}+(1+r)(e_t-c_t) ct+1=et+1+(1+r)(etct)
The standard Euler equation is
u ′ ( c t ) = β ( 1 + r ) E t [ u ′ ( c t + 1 ) ] u'(c_t)=\beta(1+r)\mathbb E_t[u'(c_{t+1})] u(ct)=β(1+r)Et[u(ct+1)]
if u ′ ′ ′ > 0 u'''>0 u>0 , Jensen’s nequality implies:
1 β ( 1 + r ) = E t [ u ′ ( c t + 1 ) ] u ′ ( c t ) > u ′ ( E t [ c t + 1 ] ) u ′ ( c t ) \frac{1}{\beta(1+r)}=\frac{\mathbb E_t[u'(c_{t+1})]}{u'(c_t)}>\frac{u'(\mathbb E_t[c_{t+1}])}{u'(c_t)} β(1+r)1=u(ct)Et[u(ct+1)]>u(ct)u(Et[ct+1])
Which shows that the marginal rate of intertemporal substitution is higher in the presence of uncertainty in c t + 1 c_{t+1} ct+1​. The difference between the two marginal rates, with and without uncertainty, is attributed to precautionary savings. to see this, suppose the variance of e t + 1 e_{t+1} et+1 increases (in a mean preserving fashion). Since numerator E t [ u ′ ( c t + 1 ) ] \mathbb E_t[u'(c_{t+1})] Et[u(ct+1)] is increasing in the variance of c t + 1 c_{t+1} ct+1, in order for the above equality to hold c t c_t ct must decrease, that is, savings increase due to precautionary savings.

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值