一开始想枚举左上角,怎么想都做不出来。
看题解,枚举右上角。
转换思路一想。
对于点 ( x , y ) (x,y) (x,y)求出左侧连续的z个数和左下角连续的z的个数。
对每一列从N到1遍历。对于 ( x , y ) (x, y) (x,y)而言,它下面的符合条件的点 ( x , i ) (x, i) (x,i)满足 l e f t [ x ] [ i ] > = i − y + 1 left[x][i]>=i - y + 1 left[x][i]>=i−y+1
假如我们每次遍历前给给 [ N , y ] [N, y] [N,y]区间的 l e f t [ x ] [ i ] left[x][i] left[x][i]减1,则 ( x , y ) (x,y) (x,y)对答案的贡献为 [ N , y ] [N, y] [N,y]区间内 l e f t [ x ] [ i ] > = 0 left[x][i]>=0 left[x][i]>=0的个数
区间减+求排名。只要写个平衡树就可以啦(但是我不会)(挖个坑,以后把用平衡树的做法写了)
再次转换思路通过对角线上的点来判断贡献。
r i g h t [ x ] [ y ] right[x][y] right[x][y]表示点 ( x , y ) (x,y) (x,y)最右边的z的位置
对于点 ( x , y ) (x,y) (x,y),它在第 x + y − 1 x + y - 1 x+y−1条斜线上。从第 r i g h t [ x ] [ y ] right[x][y] right[x][y]开始,它可以组成z矩阵。
y从大到小遍历,把可产生贡献的点加上,利用树状数组求和即可
#include <bits/stdc++.h>
using namespace std;
const int maxn = 3005;
class BIT {
public:
int c[maxn];
BIT() { memset(c, 0, sizeof c); }
void clear() { memset(c, 0, sizeof c); }
void add(int x, int add, int len) {
for (; x <= len; x += x & -x) c[x] += add;
}
int query(int x) {
int ret = 0;
for (; x; x -= x & -x) ret += c[x];
return ret;
}
int sum(int L, int R) {
return query(R) - query(L - 1);
}
} T[maxn << 1];
bool z[maxn][maxn];
long long ans;
int N, M, rig[maxn][maxn], lef[maxn][maxn], dia[maxn][maxn];
vector < pair<int, int> > ed[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("prob.in", "r", stdin);
freopen("prob.out", "w", stdout);
#endif
scanf("%d%d\n", &N, &M);
for (int i = 1; i <= N; ++i) {
string s;
getline(cin, s);
for (int j = 1; j <= M; ++j) z[i][j] = (s[j - 1] == 'z');
}
for (int i = 1; i <= N; ++i) {
lef[i][1] = z[i][1];
for (int j = 2; j <= M; ++j) {
if (!z[i][j]) lef[i][j] = 0;
else lef[i][j] = lef[i][j - 1] + 1;
}
rig[i][M] = M + z[i][M];
for (int j = M - 1; j; --j) {
if (!z[i][j]) rig[i][j] = j;
else rig[i][j] = rig[i][j + 1];
}
for (int j = 1; j <= M; ++j) {
ed[rig[i][j] - 1].push_back(make_pair(i, j));
}
}
for (int j = 1; j <= M; ++j) dia[N][j] = z[N][j];
for (int i = N - 1; i; --i) {
dia[i][1] = z[i][1];
for (int j = 2; j <= M; ++j) {
if (!z[i][j]) dia[i][j] = 0;
else dia[i][j] = dia[i + 1][j - 1] + 1;
}
}
for (int j = M; j; --j) {
for (auto tp: ed[j]) {
int x = tp.first;
int y = tp.second;
T[x + y - 1].add(y, 1, M);
}
for (int i = 1; i <= N; ++i) {
if (!z[i][j]) continue;
int len = min(lef[i][j], dia[i][j]);
ans += T[i + j - 1].sum(j - len + 1, j);
}
}
printf("%lld\n", ans);
return 0;
}