基于 GEE 计算长时序的月度植被状况指数 VCI 和温度条件指数 TCI

目录

1 植被状况指数(VCI)

2 温度条件指数(TCI)

3 完整代码

4 运行结果



​​​​​​​

本文将介绍如何使用 Google Earth Engine (GEE) 计算并可视化植被状况指数 (VCI) 和温度条件指数 (TCI) ,并制作统计图。

Kogan 等提出的植被状态指数 (Vegetation Condition Index,VCI) 。与 NDVI 一样, VCI 也可以通过 NOAA 卫星的 AVHRR 传感器获取, VCI 对干旱敏感可以消除地理位置、生态系统对 NDVI 的影响,成为了大规模遥感干旱监测的理想数据,它的可靠性得到了大量数据的证明,它是在 NDVI 的基础上计算得出的,同样 TCI 也是在 LST 的基础上计算得出的,具体的定义的可以查阅相关的论文。

1 植被状况指数(VCI)

植被状况指数是用于描述植被健康状况的关键指标,通过归一化植被指数(NDVI)的最大值和最小值之间的相对位置计算得到,主要用于反映植被的生长状况,VCI的计算公式如下:

其中,max 和 min 分别表示某一时间范围内的归一化植被指数最大值和最小值。VCI的值介于0到100之间,数值越低,表明植被状况越差,干旱程度越严重。该指标对干旱变化十分敏感,是大范围干旱监测的重要手段。

2 温度条件指数(TCI)

TCI是基于地表温度(LST)计算得到的指标,用于衡量温度对植被状况的影响,其计算公式如下:

其中,max 和 min 分别表示某一时间范围内的地表温度最大值和最小值。较低的TCI值表示较高的温度胁迫,通常意味着干旱风险增加,TCI能有效反映不同区域的气候变化对植被的压力。

3 完整代码

var roi = table;
Map.centerObject(roi,7)
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
//添加MODIS植被指数16天全球250米 
var Coll_NDVI = ee.ImageCollection("MODIS/006/MOD13Q1")//MODIS/006/MOD13A1
var Coll_LST = ee.ImageCollection("MODIS/006/MOD11A2")//MODIS/006/MOD11A1

var startYear = 2010;
var endYear = 2020;

var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear, 12, 31);

Coll_NDVI = Coll_NDVI.filterDate(startDate, endDate).sel
### 使用 Google Earth Engine 计算月度 TCI Terrain Condition Index (TCI) 是一种用于评估地形条件对水分保持能力影响的重要指标。为了在 Google Earth Engine 中实现这一目标,可以按照以下方法构建脚本。 #### 加载必要的库影像集合 首先需要导入所需的包并定义研究区域: ```javascript // 导入所需模块 var ee = require('ee'); ee.Initialize(); // 定义感兴趣的研究区域 var regionOfInterest = ee.Geometry.Polygon( [[[107.8, 29], [108.2, 29], [108.2, 29.4], [107.8, 29.4]]]); ``` #### 获取高程数据集 使用 SRTM 数据作为基础来获取 DEM(Digital Elevation Model)。这一步骤对于后续计算坡度其他衍生参数至关重要[^1]。 ```javascript // 载入SRTM全球数字高程模型 var dem = ee.Image("USGS/SRTMGL1_003"); ``` #### 提取坡向与坡度信息 基于DEM提取坡度坡向图层,这两个要素是计算 TCI 的重要组成部分之一。 ```javascript // 创建坡度图像 var slope = ee.Terrain.slope(dem); // 创建坡向图像 var aspect = ee.Terrain.aspect(dem); ``` #### 构建TPI(Topographic Position Index) 通过比较每个像素与其周围环境的高度差异来创建 Topographic Position Index (TPI),这对于理解局部地形特征非常重要。 ```javascript // 设置窗口大小以计算邻域统计量 var neighborhoodSize = 5; // 应用Focal Mean函数得到平均高度 var meanElev = dem.focal_mean(neighborhoodSize,'circle','meters'); // 计算TPI var tpi = dem.subtract(meanElev); ``` #### 综合各项因子形成最终的TCI 最后综合上述所有因素得出完整的 TCI 表达式,并将其应用于整个研究区域内。 ```javascript // 结合多个变量生成TCI表达式 function calculateTCI(slp,asp,tpi){ var slpRad = Math.PI * slp / 180; return asp.multiply(Math.sin(slpRad)).add(tpi).rename('tci'); } // 将函数应用到实际的数据上 var finalTCI = calculateTCI(slope,aspect,tpi); // 显示结果 Map.addLayer(finalTCI.clip(regionOfInterest), {min:-1,max:1,palette:'blue,yellow'}, 'Monthly TCI'); ``` 此过程展示了如何利用 GEE 平台上的工具服务来进行复杂的地理空间分析工作流设计。值得注意的是,在具体实施过程中可能还需要考虑更多细节调整,比如时间序列处理、不同季节的影响等因素[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值