目录
本文将介绍如何使用 Google Earth Engine (GEE) 计算并可视化植被状况指数 (VCI) 和温度条件指数 (TCI) ,并制作统计图。
Kogan 等提出的植被状态指数 (Vegetation Condition Index,VCI) 。与 NDVI 一样, VCI 也可以通过 NOAA 卫星的 AVHRR 传感器获取, VCI 对干旱敏感可以消除地理位置、生态系统对 NDVI 的影响,成为了大规模遥感干旱监测的理想数据,它的可靠性得到了大量数据的证明,它是在 NDVI 的基础上计算得出的,同样 TCI 也是在 LST 的基础上计算得出的,具体的定义的可以查阅相关的论文。
1 植被状况指数(VCI)
植被状况指数是用于描述植被健康状况的关键指标,通过归一化植被指数(NDVI)的最大值和最小值之间的相对位置计算得到,主要用于反映植被的生长状况,VCI的计算公式如下:
其中,max 和 min 分别表示某一时间范围内的归一化植被指数最大值和最小值。VCI的值介于0到100之间,数值越低,表明植被状况越差,干旱程度越严重。该指标对干旱变化十分敏感,是大范围干旱监测的重要手段。
2 温度条件指数(TCI)
TCI是基于地表温度(LST)计算得到的指标,用于衡量温度对植被状况的影响,其计算公式如下:
其中,max 和 min 分别表示某一时间范围内的地表温度最大值和最小值。较低的TCI值表示较高的温度胁迫,通常意味着干旱风险增加,TCI能有效反映不同区域的气候变化对植被的压力。
3 完整代码
var roi = table;
Map.centerObject(roi,7)
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
//添加MODIS植被指数16天全球250米
var Coll_NDVI = ee.ImageCollection("MODIS/006/MOD13Q1")//MODIS/006/MOD13A1
var Coll_LST = ee.ImageCollection("MODIS/006/MOD11A2")//MODIS/006/MOD11A1
var startYear = 2010;
var endYear = 2020;
var startDate = ee.Date.fromYMD(startYear, 1, 1);
var endDate = ee.Date.fromYMD(endYear, 12, 31);
Coll_NDVI = Coll_NDVI.filterDate(startDate, endDate).sel