基于YOLOv8深度学习的汽车车身车损检测系统研究与实现(PyQt5界面+数据集+训练代码)

本文研究并实现了一种基于YOLOV8深度学习模型的汽车车身车损检测系统,旨在解决传统车损检测中效率低、精度不高的问题。该系统利用YOLOV8的目标检测能力,在单张图像上实现了车身损坏区域的精确识别和分类,尤其是在车身凹痕、车身裂纹和车身划痕等常见损伤类型的检测上取得了显著效果。通过使用YOLOV8模型,系统能够以较快的速度和较高的准确率对输入图像进行处理,满足实际应用中对实时性和可靠性的要求。

为了提升用户体验,系统采用了PyQt5框架构建了交互界面,使用户可以轻松地加载车辆图像,并查看检测到的损伤类型及其定位信息。用户界面设计直观,操作简便,可显示每个检测到的损伤类型及其在图像中的具体位置。此外,系统还支持批量图像处理功能,用户可以一次性上传多张图片,系统将逐一识别并输出损伤检测结果。这种交互设计不仅提高了系统的实用性,还为用户带来了便捷的操作体验。

在数据集方面,本文专门构建并标注了一个针对汽车车损检测的数据集,涵盖了不同类型和程度的车损案例,包括车身凹痕、裂纹和划痕等多个类别。该数据集包含了多样化的车损情况,保证了模型训练过程中的泛化能力,适用于不同车型和车损场景。同时,数据集还包含了各类车损的详细标注信息,以帮助YOLOV8模型进行深度学习训练。实验验证了模型的性能,其结果显示,该车损检测系统在不同的损伤类型上均表现出较高的检测精度和识别速度,能够有效减少漏检和误检情况。

系统的成功开发与应用为汽车保险理赔、车辆维护等领域提供了一种新型的智能化解决方案。相比于传统的人工检测方式,该系统显著提高了车损检测的效率和准确性。通过自动化的车损检测流程,保险公司可以更快速、准确地处理理赔案件,减少主观误差;而在车辆维护领域,维修人员也能够利用该系统快速定位车损,制定修复方案。总之,本文提出的车损检测系统不仅在技术上实现了创新突破,而且在实际应用中也具备了广泛的推广价值,为车损检测领域带来了新的发展前景。

算法流程

项目数据

通过搜集关于数据集为各种各样的车身车损相关图像,并使用Labelimg标注工具对每张图片进行标注,分3检测类别,分别是’车身凹痕’,’车身裂纹’,’车身划痕’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、heig

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值