基于YOLOv8深度学习的心电图心脏疾病自动检测与诊断系统

随着医疗科技的进步,心脏疾病的早期诊断变得至关重要,特别是心肌梗死等重大心血管疾病。传统的心电图(ECG)分析依赖于医生的专业判断,但由于医疗资源的限制和医生的工作压力,自动化分析系统成为提升诊断效率和准确性的重要工具。本文提出了一种基于YOLOv8深度学习模型的心电图自动检测系统,能够自动识别心脏疾病的不同类型,包括心肌梗死(MI)、心脏异常(Abnormal)、心肌梗死史(History of MI)和心脏正常(Normal)。

该系统采用了YOLOv8模型进行心电图的分类和识别,能够高效处理大规模数据集,并提供实时的检测结果。为了方便医生和患者使用,本系统结合了PyQt5图形用户界面(GUI),实现了直观的交互操作。系统通过对心电图数据集进行训练,能够实现精准的心脏疾病自动识别,并通过界面反馈相关诊断结果。

本研究通过数据集的采集、模型的训练以及界面的设计,展示了基于深度学习的心电图自动检测技术在心脏疾病早期诊断中的应用潜力。实验结果表明,所提出的系统能够准确分类心电图中的心脏异常,并具有较高的诊断准确率,且与传统人工诊断方法相比,具有更快的处理速度和更高的效率。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

 

项目数据

Tipps:通过搜集关于数据集为各种各样的心电图心脏疾病相关图像,并使用Labelimg标注工具对每张图片进行标注,分4检测类别,分别是’心肌梗死’, ‘心脏异常’,’心肌梗死史’,’心脏正常’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值