数值分析学习(二)之Open Methods求根

本文介绍了数值分析中开型法(Open Methods)求根,重点讲解了牛顿-拉普森(Newton-Raphson)方法的迭代公式,通过实例展示了即使初始预测不佳,最终仍能收敛到正确结果。同时提到了Secant Method、Modified Secant Method和Brent's Method,这些方法在处理多根和特定情况时可能更具挑战性。
摘要由CSDN通过智能技术生成

求根的方法有很多,前面介绍了用交叉法(Bracketing Method)求函数的根,本文介绍几种用开型法(Open Methods)求根的方法。但着重介绍牛顿-拉普森(Newton-Raphson)法。在Bracketing Methods中,一般需要两个初始的猜想值,用于迭代的起始。但是在Open Methods中,只需要一个起始值或者两个但是不需要让它们分布在精确值对的两侧。但是Open Methods方法的缺点是,在有些情况下他不能得到收敛的值,如下图:


1、牛顿-拉普森(Newton-Raphson)方法

      牛顿-拉普森迭代算法的推导,如图:


   斜率slope能通过如下方程得到:


其中,xi为开始的假设值。则下一个x值的求取形式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值