二阶线性偏微分方程的分类

来源是西电数模双创课程《数学物理方法》作业。

题目:判断下列方程类型,双曲?抛物?椭圆?
(1)u_{xx}+4 u_{xy}-3 u _{yy}+2u_x+6u_y=0
(2)\left (1+x^2 \right )u_{xx}+\left ( 1+y^2 \right )u_{yy}+xu_x+yu_y=0
(3)u_{xx}+xyu_{yy}=0

二阶线性偏微分方程的一般形式

\sum_{i,j=1}^{n}a_{ij}\frac{\partial ^2 u}{\partial x_i\partial x_j}+\sum_{i=1}^{n}b_i\frac{\partial u}{\partial x_i}+cu=f,\quad a_{ij}=a_{ji}

n=2时,可以写成

$a_{11}u_{xx}+2a_{12}u_{xy}+a_{22}u_{yy}+b_1u_x+b_2u_y+cu=f(x,y)$

$\Delta=a_{12}^2-a_{11}a_{22}$,则有二阶线性偏微分方程分类表:

Δ>0双曲型方程$u_{xx}-a^{2}u_{yy}=f$
Δ=0抛物型方程$u_{x}-a^{2}u_{yy}=f$
Δ<0椭圆型方程$u_{xx}+u_{yy}=f$

解答

为了判断这些方程的类型,我们需要计算它们的特征方程,并分析特征根的情况。特征方程是通过将二阶偏导数项写成二次型的形式来得到的。
(1)对于方程$u_{xx}+4u_{xy}-3u_{yy}+2u_x+6u_y=0$,我们首先将其中的二阶偏导数项写成二次型的形式:
特征方程为:A u_{xx} + B u_{xy} + C u_{yy} = 0,其中A=1, B=4, C=-3。
计算判别式:B^2 - 4AC = 4^2 - 4 \cdot 1 \cdot (-3) = 16 + 12 = 28 > 0
因为判别式大于0,所以这是一个双曲型方程。
(2)对于方程\left ( 1+x^2 \right )u_{xx}+\left ( 1+y^2 \right )u_{yy}+xu_x+yu_y=0,同样地,我们只关注二阶偏导数项:
特征方程为:$A u_{xx} + C u_{yy} = 0$,其中 $A=1+x^2, C=1+y^2$
计算判别式 :B^2 - 4AC = 0^2 - 4(1+x^2)(1+y^2) = -4(1+x^2)(1+y^2) < 0
因为判别式小于0,所以这是一个椭圆型方程。
(3)对于方程$u_{xx}+xyu_{yy}=0$,我们同样只关注二阶偏导数项:
特征方程为:$A u_{xx} + C u_{yy} = 0$,其中 $A=1, C=xy$
计算判别式 :$ B^2 - 4AC = 0^2 - 4 \cdot 1 \cdot xy = -4xy. $
判别式的符号取决于x和 y的值。如果 xy>0,则判别式小于0,方程是椭圆型的;如果 xy<0,则判别式大于0,方程是双曲型的;如果 xy=0,则判别式等于0,方程是抛物型的。
综上所述,方程类型分别为:
(1)双曲型;
(2)椭圆型;
(3)坐标轴上为抛物型,一、三象限为椭圆型,二、四象限为双曲型。

  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赭红色的锆石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值