A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation (RecSys 2023)
序列推荐方法在推荐系统中发挥着不可替代的作用,它可以从行为序列中捕获用户的动态偏好。 尽管取得了成功,但这些工作通常会遇到实际应用中普遍存在的稀疏问题。 跨域顺序推荐旨在通过引入相对丰富的源域数据来缓解这一问题。 然而,大多数现有方法独立于每个域捕获用户的偏好,这可能会忽略来自不同域的序列之间的项目转换模式,即用户在一个域中的交互可能会影响他/她在其他域中的下一次交互。 此外,由于目标域和源域中的某些项目仅交互有限次数,因此数据稀疏问题仍然存在。 为了解决这些问题,在本文中,我们提出了一个名为多视图图对比学习(MGCL)的通用框架。 具体来说,我们在域内项目表示视图和域间用户偏好视图中采用对比机制。 前者是共同学习用户序列图中的动态序列信息和跨域全局图中的静态协作信息,而后者是捕获来自不同域的用户偏好的互补信息。