【A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation】

A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation (RecSys 2023)

在这里插入图片描述

序列推荐方法在推荐系统中发挥着不可替代的作用,它可以从行为序列中捕获用户的动态偏好。 尽管取得了成功,但这些工作通常会遇到实际应用中普遍存在的稀疏问题。 跨域顺序推荐旨在通过引入相对丰富的源域数据来缓解这一问题。 然而,大多数现有方法独立于每个域捕获用户的偏好,这可能会忽略来自不同域的序列之间的项目转换模式,即用户在一个域中的交互可能会影响他/她在其他域中的下一次交互。 此外,由于目标域和源域中的某些项目仅交互有限次数,因此数据稀疏问题仍然存在。 为了解决这些问题,在本文中,我们提出了一个名为多视图图对比学习(MGCL)的通用框架。 具体来说,我们在域内项目表示视图和域间用户偏好视图中采用对比机制。 前者是共同学习用户序列图中的动态序列信息和跨域全局图中的静态协作信息,而后者是捕获来自不同域的用户偏好的互补信息。

背景-序列跨域推荐

在这里插入图片描述

如上图所示,用户在源域(图书)看了好多《福尔摩斯》相关书籍,那么在目标域(电影),可以为用户推荐关于福尔摩斯相关的电影。

创新

1.构建了一些用户序列图和跨域全局图来学习复杂的项目表示,并采用对比机制来捕获跨不同域的动态顺序信息、静态协作信息和转换模式。
2.提出了一种用于跨域顺序推荐的通用对比学习框架,称为多视图图对比学习(MGCL),该框架从域内项目表示视图和域间用户偏好视图解决了数据稀疏性问题。

方法

问题定义

1.用户:U, 物品:I
2.每个用户𝑢 ∈ U的目标领域行为序列为X = {𝑥1, 𝑥2, . . . , 𝑥𝐿 }(按交互时间排序)
3.该序列由目标领域物品集合中的𝐿个物品组成。如果序列长度小于𝐿,则会在序列开始处反复添加填充物品。
4.X𝑡 = {𝑥1, 𝑥2, . . . , 𝑥𝑡 },1 ⩽ 𝑡 ⩽ 𝐿,表示针对序列X在时间步𝑡的截断行为序列。同样地,我们用Y𝑡′= {𝑦1, 𝑦2, . . . , 𝑦𝑡′ }表示源领域的截断物品序列。
5.其中𝑡′表示在目标领域时间步𝑡所对应的真实时刻之前,用户在源领域中最近一次交互的时间步。

模型框架

在这里插入图片描述

域内表示视图(源域【图书】和目标域【电影】)

1.目标域的项目表示
	以一个用户u为例,构建有向图,其交互项序列为Xt,每个节点作为一个项目xi属于Xt。
	图中的边(xi,xi+1),是用户先点击了物品xi,然后点击了 xi+1。
2.目标域有向图的编码
	采用门控 GNN 作为用户序列图编码器,它使用 GRU 逐步对序列数据进行建模并控制节点之间的信息流。
	使模型能够选择性地聚合和更新节点嵌入 。

目标域中的每个节点表示如下,
在这里插入图片描述
源域构建的有向图同理。

在这里插入图片描述

跨域全局表示视图

跨域全局图是一个无向二部图,其中一个用户节点代表用户集 U 中对应的用户𝑢𝑖。根据用户在目标域和源域中的交互序列,每个用户节点都链接到以下项节点: 他/她曾与之互动过。 在这样的图构建中,不同的用户序列可以通过项目节点关联起来,来自不同领域的项目节点也可以通过用户节点关联起来,从而实现知识跨不同序列和领域的迁移。
采用LightGCN进行编码
在这里插入图片描述

最终获得目标区域和源域的项目表示

在这里插入图片描述

域内(源域和目标域)对比学习

  1. 用户序列图包含单个用户行为序列的动态序列信息,而跨域全局图包含跨序列和域的静态协作信息。 为了共同学习不同图的互补信息,我们将对比机制应用于用户序列图跨域全局图中用户行为序列的相应项目嵌入。
  2. 我们对每个图编码器层的输出应用非线性投影,这在 SimCLR [4] 中被证明是有效的。 辅助投影模块将项目表示映射到应用对比损失的空间,这使得对比学习更加灵活和强大。
  3. 目标域为例,将图编码层的输出经过非线性投影
    在这里插入图片描述
    在这里插入图片描述
对比学习
  1. 正样本对:不同图上的相同项目(跨域全局图中的物品和目标域中的相应物品作为正样本对)
  2. 负样本对:不同用户的相同项目
    在这里插入图片描述
    源域的对比学习类似
    在这里插入图片描述

域间用户偏好视图

  1. 获得项目表示后,典型的方法是采用序列编码器来捕获用户的序列偏好,即从用户的行为序列中探索用户当前的兴趣和转换模式。 然而,大多数现有方法仅关注单个域中的用户序列,当目标域中的数据高度稀疏时,推荐性能可能不令人满意。
  2. 此外,用户在一个域中的交互可能会影响他/她在其他域中的下一次交互,这意味着来自不同域的序列之间也存在项目转换模式。 因此,我们的目标是考虑目标领域和源领域的用户偏好,并实现跨领域的知识迁移。
  3. 此外,我们将对比机制应用于目标域顺序偏好和源域顺序偏好,以学习互补信息并导出一些自监督信号。

顺序偏好学习

首先聚合通过用户序列图和跨域全局图学习到的图嵌入。 然后,我们使用序列编码器来捕获目标域和源域中的用户顺序偏好。

图嵌入整合

用户序列图中的项目嵌入包含顺序信息,而跨域全局图中的项目嵌入包含协作信息。 为了获得更合适的项目表示,我们通过加权和自适应地聚合这两者。

以目标域为例,源域同理。

在这里插入图片描述

序列编码

在这里插入图片描述

域间偏好对比学习
 对比机制应用于目标域序列偏好和源域序列偏好。

特征映射
由于不同领域的项目特征可能不一致,为了实现从源领域到目标领域的知识迁移,我们采用映射单元来重建用户在源领域的顺序偏好。

源域到目标域的映射如下

在这里插入图片描述
正样本对: 同一用户的不同域的偏好。
负样本对:目标域下,不同用户的偏好。

在这里插入图片描述

预测

拼接不同域的用户偏好

在这里插入图片描述

经过非线性变换

在这里插入图片描述

最终与候选物品点击,获得预测分数

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值