扩散模型是深度学习中一种强大的建模工具,广泛应用于图像生成、语言处理和时间序列预测等任务。它通过模拟信息在网络中的传播和交互过程,能够捕捉到全局依赖关系和长程依赖性。本文将介绍扩散模型的通用框架,并提供相应的源代码。
扩散模型的通用框架可以分为以下几个关键组件:扩散函数、更新规则和训练过程。接下来,我们将分别介绍每个组件的作用和实现方式。
- 扩散函数:
扩散函数用于描述信息在网络中的传播方式。在图像生成任务中,扩散函数可以是一个卷积运算,将局部特征进行传播和融合;在语言处理任务中,扩散函数可以是一个循环神经网络,将上下文信息逐步传递并更新隐藏状态。扩散函数的设计需要根据具体任务和数据特点进行选择。
下面是一个简单的卷积扩散函数的实现示例:
import torch
import torch.nn as nn
class ConvDiffusion