BO-LSTM贝叶斯优化长短期记忆神经网络在股票价格预测中的时序预测及MATLAB实现

本文探讨了BO-LSTM如何结合贝叶斯优化和LSTM改进股票价格预测效果。通过MATLAB代码示例,展示了如何利用贝叶斯优化调节LSTM模型超参数,以提高预测性能。文章详细解释了数据预处理、模型构建、超参数搜索及性能评估的过程,并鼓励读者根据自身需求进行扩展应用。
摘要由CSDN通过智能技术生成

时序预测是金融领域中一个重要的问题,对于股票价格预测尤为关键。BO-LSTM(Bayesian Optimization Long Short-Term Memory)是一种结合了贝叶斯优化和长短期记忆神经网络(LSTM)的方法,用于改善股票价格预测的效果。本文将介绍BO-LSTM的概念,并提供MATLAB实现代码,帮助读者理解和应用该方法。

BO-LSTM的核心思想是利用贝叶斯优化来自动调节LSTM模型的超参数,以提高模型在股票价格预测任务中的性能。贝叶斯优化是一种通过建立一个代理模型来近似目标函数,并根据代理模型的反馈来选择下一个参数样本的方法。通过迭代优化过程,贝叶斯优化可以找到最优的超参数组合,从而提高模型性能。

下面是BO-LSTM在MATLAB中的实现代码:

% 导入股票价格数据
data = readtable('stock_data.csv')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值