无偏方差为什么是n-1?

本文从无偏性角度和自由度角度解释了为什么无偏方差的分母是n-1。无偏性角度表明,如果分母是n,则样本方差会小于总体方差,不符合无偏性要求;自由度角度指出,由于样本均值的约束,样本的自由度实际上是n-1,使用n-1可以得到正确估计总体方差的无偏估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无偏方差分母为什么是n-1?

无偏性角度

若样本总体期望为μ,方差为σ2,X是来自总体样本容量为n的样本。
证明:
样 本 均 值 X ˉ = 1 n ∑ i = 1 n X i 总 体 方 差 σ 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 1 n ∑ i = 1 n ( X i − μ ) = X ˉ − μ D ( X ˉ ) = σ 2 n 样本均值 \bar{X} = \frac{1} {n} \sum_{i=1}^nX_i \\ 总体方差\sigma ^2 = \frac {1} {n} \sum_{i=1}^n (X_i - \mu)^2 \\ \frac {1} {n} \sum_{i=1}^n(X_i - \mu) = \bar{X} - \mu \\ D(\bar{X}) = \frac {\sigma ^2} {n} Xˉ=n1i=1nXiσ2=n1i=1n(Xiμ)2n1i=1n(Xiμ)=XˉμD(Xˉ)=nσ2
若分母为n则由无偏性的定义:
S 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 E [ S 2 ] = E [ 1 n ∑ i = 1 n [ ( X i − μ ) − ( X ˉ − μ ) ] 2 ] = E [ 1 n ∑ i = 1 n [ ( X i − μ ) 2 − 2 ( X i − μ ) ( X ˉ − μ ) + ( X ˉ − μ ) 2 ] ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ˉ − μ ) ⋅ 1 n ∑ i = 1 n ( X i − μ ) + ( X ˉ − μ ) 2 ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − ( X ˉ − μ ) 2 ] = σ 2 − 1 n σ 2 = ( 1 −

在Python或R中计算一组数据的波动性指标,通常指的是计算数据的方、标准或变异系数等统计量。下面分别介绍如何在这两种语言中实现。 ### Python 中的实现: 在Python中,可以使用内置的统计函数或者`numpy`和`pandas`库来计算波动性指标。以下是一个使用`numpy`的例子: ```python import numpy as np # 假设data是一个包含数据点的列表或数组 data = [10, 20, 30, 40, 50] # 计算平均值 mean = np.mean(data) # 计算方 variance = np.var(data, ddof=0) # ddof=0 为样本方,若为1则为样本无偏方 # 计算标准,它是方的平方根 std_dev = np.std(data, ddof=0) # 计算变异系数,即标准除以平均值(通常用百分比表示) cv = (np.std(data, ddof=0) / np.mean(data)) * 100 print(f"方: {variance}") print(f"标准: {std_dev}") print(f"变异系数: {cv}%") ``` ### R 中的实现: 在R语言中,可以直接使用内置的统计函数来计算波动性指标。以下是R中计算波动性指标的一个例子: ```R # 假设data是一个包含数据点的向量 data <- c(10, 20, 30, 40, 50) # 计算平均值 mean_value <- mean(data) # 计算方 variance <- var(data) # 计算标准,它是方的平方根 std_dev <- sd(data) # 计算变异系数,即标准除以平均值(通常用百分比表示) cv <- (sd(data) / mean(data)) * 100 cat("方:", variance, "\n") cat("标准:", std_dev, "\n") cat("变异系数:", cv, "%") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值