人工智能的伦理问题

本文探讨了人工智能面临的伦理问题,包括算法歧视,如图像识别软件的种族偏见和聊天机器人的歧视言论;隐私忧虑,大数据学习引发的个人隐私泄露和控制权减弱;法律难题,如无人车事故责任归属;以及情感问题,讨论了人与AI可能产生的感情联系及其对伦理规范的影响。这些问题揭示了AI发展中的复杂伦理挑战,需要程序员、伦理学家和社会共同面对和解决。
摘要由CSDN通过智能技术生成
人工智能的持续进步和广泛应用带来的好处将是巨大的。但是,为了让AI真正有益于人类社会,我们也不能忽视AI背后的伦理问题。


第一个是算法歧视。

可能人们会说,算法是一种数学表达,是很客观的,不像人类那样有各种偏见、情绪,容易受外部因素影响,怎么会产生歧视呢?之前的一些研究表明,法官在饿着肚子的时候,倾向于对犯罪人比较严厉,判刑也比较重,所以人们常说,正义取决于法官有没有吃早餐。算法也正在带来类似的歧视问题。比如,一些图像识别软件之前还将黑人错误地标记为“黑猩猩”或者“猿猴”。此外,2016年3月,微软公司在美国的Twitter上上线的聊天机器人Tay在与网民互动过程中,成为了一个集性别歧视、种族歧视等于一身的“不良少女”。随着算法决策越来越多,类似的歧视也会越来越多。而且,算法歧视会带来危害。一方面,如果将算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,一旦产生歧视,必然危害个人权益。另一方面,深度学习是一个典型的“黑箱”算法,连设计者可能都不知道算法如何决策,要在系统中发现有没有存在歧视和歧视根源,在技术上是比较困难的。



为什么算法并不客观,可能暗藏歧视?算法决策在很多时候其实就是一种预测,用过去的数据预测未来的趋势。算法模型和数据输入决定着预测的结果。因此,这两个要素也就成为算法歧视的主要来源。一方面,算法在本质上是“以数学方式或者计算机代码表达的意见”,包括其设计、目的、成功标准、数据使用等等都是设计者、开发者的主观选择,设计者和开发者可能将自己所怀抱的偏见嵌入算法系统。另一方面,数据的有效性、准确性,也会影响整个算法决策和预测的准确性。比如,数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值