重写视野边界问题和对新模型的探讨

我发现了一个问题,之前解释边界的时候使用的双曲线,但是双曲线不存在。后来模糊了,双曲线存在了,但是边界模糊了,我该如何定义边界呢?边界到底是因为什么产生的呢?

按理说从看不见到看得见,这就是边界啊。

首先就是模糊的问题,如何定义模糊。应该把模糊定义为弥散圆到达像曲面S1的时候,超过了检测仪器的规定的大小,但是问题是S1和透镜的距离是可以改变的,透镜的焦距和光圈大小也可以改变,这些都影响最终形成的弥散圆的大小。另一个问题就是就算弥散圆O不超过仪器的规定大小,但是来自物体的光的尺度不同,使得最终看到的物体的微观结构不同,比如是厘米级别,或者毫米级别的。所以弥散圆并不可靠,而是我之前定义的双曲线的长度更合理一些。利用双曲线的长度反应微观结构,渐近线反应视野范围。但是问题是我之前又说过,过多的模糊导致不同的双曲线重叠出现,有没有可能一开始长的双曲线是存在的呢?

我之前无法确定长双曲线的存在,但是现在发现模糊之后,长双曲线很可能是真实存在的。那么我之前提出的简化的版本就是真实的样子,但是还是需要对边界进行讨论。

以双曲线为基线,构造3维的边界。但是这里是在图纸上,我只需要画出2维图形即可。

假设x2是边界线上的点,如图所示是绿色,这里我并没有给出双曲线的边界线,因为这里复杂了,我最后直接把整个曲线变形即可得到真实的边界形状了。

x2映射到了y2,y2是像曲面S1的边界,所以紫色的y1就不用看了,因为在成像区域的边界外了。然后是看y3。本来不在边界线上,x1是不可能成像的,因为在视野范围之外了,但是弥散圆存在,使得x1也应该本看做是边界。那么由于这个光程差更大,所以,橙色的双曲线的渐近线斜率更大一些。橙色和绿色包围的区域,设为L1,就是所谓的边界线了。但是绿色并不是真正的边界,还需要把这个区域L1经过一个连续的变换,使得L1的绿色边界变成双曲线,得到的区域L才是真正边界。

但是如果看内部,把y2理解为在成像曲面S1内点,那么也能想象出来内部的形状情况是什么样子的。关键是弥散圆看做是一个成像点,那么整个3维的形状映射为一个点。

但是要这样理解的前提是证明上证明无限长的双曲线存在,还是要做微分方程,我之前就没做。需要证明双曲线,即图中的绿线存在。

现在看另外一个问题。像边界上的不同点,观察的光线的交叉区域的问题,发现a点既在y1上,也在y2上,所以a点在边界上的显示变大了,这符合模糊的说法。

上面的内容错了,并不需要绿色,因为本身就是基于光程差计算的,绿线没有关系,所以不需要根据绿线进行变形,使得绿线成为双曲线,上面的结果就是真实的边界的样子了。

下面是重新建立数学关系的推导。

=========================================================================

模糊本来就是多对多,但是烦人。本来在曲面同胚的时候我解释为位置对应,不管光强,因为光强不重要,不相互干扰就不用管强度了,但是现在强度都相互叠加了,不能不管光强了,所以,除了位置的多对多的关系,还有强度的叠加的关系,我发现模糊的复杂性远超想象。

位置多对多,该怎么考虑呢?我打算从正的多对一,从物空间到像曲面的一个点看。反过来是考虑像曲面的一个局部,找到来自哪个点。问题是任意的局部V都能找到来自物空间的一个点发出的光到达吗?

任意局部不可能,但是充分小的时候,局部V包含于某个弥散圆U中,这是一定的,因为弥散圆的大小是固定的。我想使用有限覆盖定理,那就只能假设弥散圆是开集,像曲面是闭集,这无所谓,因为只是位置的映射关系,不涉及到光强。只要是有限覆盖了,那就有这些集合就有最小的直径,所以只要充分小,就可以包含在一个弥散圆中,那么就能够是物空间中的同一个点发出的光线映射的位置了。

结论就是:对于像曲面上的充分小的局部V都能找到来自物空间的一个点发出的光到达。

所以一对多就完成了定义。

=========================================================================

接着考虑多对一。多对一我之前没有写过,之前是写的等同跟这里不一样。

这里先假设一个前提,就是在模糊的时候,一个点发出的光到达像曲面形成的是区域,而不是线条,这个模糊的区域叫做弥散圆。

我重新开始,先不搞等同,所以多对一是不同位置映射到像曲面S1上的同一个位置,在有弥散圆的情况下。考虑像曲面S1上的一点O, 当O点有个弥散邻域U的时候,U并没有什么用,只是当U出现的时候,其他的点的弥散邻域都是固定大小的。我只能说在O的附近邻域W中,内部的点y1均有弥散邻域U1,只有U1包含O的时候,才能说来自物空间的x1点的光到达了O点,所有的这样的点的弥散圆Ua包含O的时候,通过弥散圆得到物空间的一个点xa,所有xa的集合就是寻找的物空间的区域,对应的多的含义了。

完成了多对多的拆分,再深入考虑他们。(这只是我的一种拆分的方式,但是还有更多的,我只是随便写写的。)

=========================================================================

但是要想得到完整的描述多对多的关系,只能使用集合族映射了,就是比如{x1,x2,x3}->{y1}, {x1, x3}->{y2}, 这种样子。多对一改成是集合族A到曲面S1的一一映射,集合族A的元素是物空间D的子集,但是子集之间是可以相交的。

一对多改成是物空间D到集合族B的一一映射,集合族B的元素是像曲面S1的子集,但是是重复的。

这样我把多对多写成两个单独的映射了。问题是这两个映射连续吗?就算是不连续,也要赋予使其连续的拓扑结构,那就认为是连续的, 其实是同胚的。

我这里没写清楚解析的过程,我再写一下。我这里的定义是非构造性的,因为充分小不知道多小。只要邻域的直径是一定长度,它就有直径无限小的内部,也算。但是在有限覆盖的情况下,这不是问题,这是点集拓扑中的紧致空间。

取所有的像S1的充分小的邻域构成集合族B。

H1:D->B作为一一映射,感觉并没有包含所有的一对多的情况,比如a->y, b->y, 只选择了其中的一个。

然后是J1:A->S1作为一一映射,这个也漏掉了一种情况,比如集合a映射到y, 集合b->y, 但是假设b是a的真子集,而A根据定义,是所有映射到y的物点x的集合,那么集合b就不属于A了。

这两个映射看起来是有问题的。首先我想要找的是等价原来的多对多的映射关系。考虑H1的a->{y}, b->{y}, 只选择了其中的一个的情况,这种情况确实存在,但是要注意,我前面加了所有,也就是说,还有这种情况b->{y, y1}, a->{y, y2}。漏掉的情况可以通过取子集族然后把{y,y1}和{y,y2}等同补全。就不会有遗漏。发现写错了,H1不是映射,而是关系,只有改成关系才合理。倒过来写成多对一也行,但是还不如学J1的定义。

J1看起来也是存在遗漏的情形。但是既然b是a的真子集,那么b的像点就是a的像点,又何必非要构建以b为变量值的映射找b的像点呢。

由于H1在讨论的过程发生了矛盾,重写一遍定义一对多:

由于对于像曲面上的充分小的局部V都能找到来自物空间的一个点发出的光到达。那么取极大的局部V存在来自物空间的一个点发光到达。这个对应关系是一对一的,不可能这点发出的光到达其他的位置,不在这个局部上了。所有这样的极大局部V组成像曲面S1的集合族B。

这样,H1:D->B是一一映射。

总之,这两个映射都是一一对应的,还是微分同胚的,而且要从像区域S1得到物区域D选择J1还是选择H1呢?这两个映射都没有问题,使用H1,需要把像区域S1使用覆盖的观点。使用J1是逐个点求原象。(怎么说呢?我本来是想建立拆分的方式,使得每个映射不能完全表述多对多的关系的,只有合起来看的时候能清晰表述。但是发现拆分失败了,H1和H2都能完全表述这种关系,这意味着问题虽然从多对多变成了新的拓扑空间的微分同胚,但是并没有得到简化。)

=========================================================================

虽然建立了数学上的描述,但是我一开始假设的都是点和单连通区域(集合族的元素都是单连通区域)的一一对应,为什么元素不可以是非单连通的呢?当然可以,只要透镜改造一下,就可以得到各种连通性的区域了,这就更复杂了,我连位置都没搞明白,不管这个。

所以像曲面上的点的关系,其实就是物体空间D上的另一种关系。更具体地说,在像曲面上给出一条直线求斜率,在物体空间表现为什么呢?只能把物体空间分割成不同的区域,并且分割的区域还是重叠的,虽然是重叠,但是需要重新规定拓扑结构,使得在欧式空间中看起来是重叠的,但是在新的拓扑空间中不是,然后就可以定义这个拓扑空间的微分运算和积分运算,所以知道斜率在这个拓扑空间中表示什么了吧,很难想象,但是这就是微分流形。

=========================================================================

现在考虑弥散圆内的等同到底是等同了什么如果把像曲面S1限制在一个弥散圆内,那么在物空间中也是有了限制,但是还是多对多的关系。根据上面的定义那么假设是y的弥散圆O,那么就是物空间中的任意点x, 映射成区域U和O的交集不为空,那么可以理解为等同的是集合族中,所有元素包含这样的x的元素取并集了?或者理解为由符合上面的x组成的元素作为物空间D的子集呢?

这里有两种理解方式,第一种是多对一和一对多拆解得到的,第二种直接是多对多,当两种表述方式完全等价的时候,那么这两种理解方式也是一个结果。

=========================================================================

为了在弥散圆内准确理解像曲面上的关系,只能把物体空间分割成不同的小块,而且还重叠了,重新给了拓扑结构。(但这是多对一理解像。从像理解物体空间选择一对多。需要把像曲面分割,不管这个。)然而这只是弥散圆存在的时候的拓扑结构,并没有做等同,当做了等同之后,重叠的拓扑空间的元素中的部分有相同的会合并了(注意是部分,而不是全部),使得合并之后与弥散圆一对一对应,这是从多对一的值域进行了分割,还是重叠分割,利用一对多的方式。

所以弥散圆的等同处理,更加的复杂了。

确切地说,就是分割了物体区域D和像曲面S1, 分割方式是有重叠的,这个子集分别形成了各自的拓扑空间,然后他们之间的关系是同胚的。这样我解释了什么是等同。

=========================================================================

我上面给出了弥散圆存在的情况下,拓扑空间的建立,并且给出了还是同胚关系。但是这个建立过程是建立在完全清晰成像的说法上的,即是像区域的弥散圆的最大直径没有超过测量仪器的。

这样就能解释明明是清晰成像,为什么没有得到微观结构的信息。因为分割区域的大小决定了观察的尺寸(在像中的一个点代表的空间的一大块区域)。高清成像不代表是有成像微观结构。高清和微观是两回事。

========================================================================

我本来是要再写光强的叠加问题的,但是我发现我自己建立了新的微分同胚,那么就不需要在考虑光强了,因为是一一对应的,即使光强叠加模糊了像曲面上的每个点,但是每个点存在邻域U和物体的区域D是一一对应的,也就是说测量仪器看到的不是点,而是这个邻域U,测量仪器看到的是我上面推导的拓扑空间,而不是成像曲面S1,当把邻域U看做是一个点的时候,就会明白光强模糊微观结构(即U的内部的光强叠加)没有意义了,因为测量仪器本来也看不到微观结构。这个时候,测量仪器认为测量得到的是这个尺度下的最高清了,没有更清晰的可能了,因为测量仪器只能测量这个尺度。

========================================================================

好吧,结束了,不能说没有解决问题,但是没有得到我想要的结果。(我更想了解一个问题,如果只能看到1厘米的倍数的结构,有一天得到了1.1cm的尺子,不是测出来的,而是假设知道的,能否测量出来1厘米以下的结构呢?因为0.1cm看不出来,但是十个尺子紧密排列得到了11cm就能够看出来多出了1cm。问题是0.9cm看不到如何人为的排列?不能主动排列,只能无意中的排列就能观察到了,只要观察到一次,就可以人为的多观察几次,然后获得规律,利用规律排列,虽然不是人为的主动排列,但是在规律中能找到更大几率观察到。把所有的观察的结果分析,就能得出0.9cm是0.9cm了。所以想要分析微观结构,尽管从弥散圆来说已经等同看不出来了,但是在更大的区域中,存在大量的反常光学现象,可以拼凑出来小于弥散圆尺寸的成像,这需要大量的数据计算才能得到。弥散圆并没有让微观信息消失,而是分散了在广大的区域中。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器学习模型机器
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值