极限学习

1、Extreme learning machine, ELM

2、基于前馈神经网络,通常使用单层前馈神经网络(Single Layer Feedforward neuron Network, SLFN)

3、特点是输入层与隐藏层之间的连接权值可以随机或人为给定的,且不需调整;隐藏层与输出层之间的连接权值不需要迭代调整,通过解方程一次性确定;具有效率高、范化能力强的特点,多用于特征学习、聚类、回归等。

4、原作者:南洋理工大学的Guang-Bin Huang等人

此处采用岭回归来求解输出权重,

\beta^{\ast }=\left ( H^{T}H+1/C\right )^{-1}H^{T}T

参考:简单易学的机器学习算法——极限学习机(ELM)

简单易学的机器学习算法——岭回归(Ridge Regression)

极限学习机

示例:

import numpy as np
import matplotlib.pyplot as plt


def sigmoid(a, b, x):
    '''
    定义Sigmoid函数: g(z) = 1/(1+e^-(ax+b))
    '''
    return 1.0 / (1 + np.exp(-1.0 * (x.dot(a) + b)))


def ELM_prototype(X, T, C, n, L):
    '''
    回归问题的ELM标准算法
    变量:X - 输入数据;样本数x特征数(N*n)
           :H - 输出矩阵;样本数x隐含层节点数(N*L)
           :T - 学习目标;样本数x输出层节点数(N*M)
           :C - 正则化系数
    '''
    # 随机初始化
    a = np.random.normal(0, 1, (n, L))
    b = np.random.normal(0, 1)
    # 使用特征映射求解输出矩阵
    H = sigmoid(a, b, X)
    # 计算输出权重和输出函数
    HH = H.T.dot(H);
    HT = H.T.dot(T)
    beta = np.linalg.pinv(HH + np.identity(L) / C).dot(HT)
    Fl = H.dot(beta)
    # 返回计算结果
    return beta, Fl


# 测试:构造输入值和训练目标(输入变量n=2; 输出变量m=1)
x1 = np.linspace(1, 20, 150)
x2 = np.linspace(-5, 5, 150)
X = np.vstack([x1, x2]).T
T = np.sin(x1 * x2 / (2 * np.pi)) + np.random.normal(0, 0.2, 150)
# 使用ELM算法进行学习(隐含层节点数L=100; 正则化参数C=1e5)
beta, Fl = ELM_prototype(X, T, C=1e5, n=2, L=100)
# 绘制学习结果
fig1 = plt.figure('fig1')
plt.plot(x1, T, lw=1.5, label='Training goal')
plt.plot(x1, Fl, lw=3, label='ELM output')
plt.legend()
plt.show()
plt.savefig('result.png')
plt.close()

 

    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值