Hugging Face汉化教程及注册使用详解

今天这篇文章带大家详细分享下如何汉化Hugging Face!最近在浏览Hugging Face时发现里面很多模型都有些专业词汇,阅读起来没有直接看中文那样清爽!

有看过我之前教大家如何部署AI大模型文章(创作中心-CSDN)的朋友们应该也发现了,Hugging Face里面囊括了全部开源AI大模型源码并且里面有详细的社区问题解答,在当前AI时代的大环境下,如果你还不知道Hugging Face就和程序员没看过Github一样,会错过很多优秀的AI应用!

本篇文章,将带你详细了解下:什么是Hugging Face?如何使用Hugging Face?如何汉化Hugging Face? 让你在AI的学习上少走弯路!

一、什么是Hugging Face?

简单来说,Hugging Face就像是AI界的GitHub

它是一个开源AI的社区和平台,集模型库、数据集、协作工具和社区于一体。

1、如何注册使用Hugging Face

Hugging Face和Github一样,无法直接访问,需要提前准备下魔法和邮箱,再直接进行注册即可。

官网地址:https://huggingface.co/

ps:没有魔法的可以到圈友互联AI(圈友互联AI),应用中心去领取!

2、海量AI模型库

目前Hugging Face平台托管着超过160万个开源AI模型!从对话、文生图到语音识别、3D建模等,一应俱全。

像Google、Meta、DeepSeek、阿里等这样的AI头部企业,只要发布最新模型,基本都会第一时间在Hugging Face上架。

而且,详情里面都会详细介绍模型的具体功能,对比效果测评以及本地部署步骤!

另外详情里面也提供了丰富的数据集,涵盖了各种任务和语言,如果想对模型进行训练和微调可以直接拿来使用,省去了大量学习成本时间。

3、产品定价

作为一个开源社区,它极大地降低了接触和使用先进AI技术的门槛。很多基础功能免费,即使是需要GPU等资源的Pro会员,价格也很实惠($9 / 月)

这里订阅需要使用VISA卡支付,没有VISA卡的朋友们可以使用以下两种方式去注册个,第一种使用野卡:WildCard | 一分钟注册,轻松订阅海外线上服务

第二种使用Dupay:Dupay Visa

这里就不做详细讲解如何注册步骤了,自己根据链接进到里面按提示下一步即可简单完成!

三、如何汉化Hugging Face?

这里浏览器推荐使用谷歌浏览器,里面支持海量扩展插件

1、安装篡改猴脚本插件

地址:首页 | Tampermonkey,脚本神器,可以快速搜索各种脚本突破网页的限制

2、安装Hugging Face汉化脚本

脚本地址:https://greasyfork.org/zh-CN/scripts/454783-%E6%B1%89%E5%8C%96huggingface-%E8%8F%9C%E5%8D%95%E6%B1%89%E5%8C%96/code,点击安装此脚本,也可以自己到脚本仓库中心:https://greasyfork.org/zh-CN/scripts 直接搜索

进入到以下页面,点击安装

3、打开篡改猴插件及脚本

打开上面下载的插件,再打开脚本,直接刷新下页面即会自动汉化了

4、安装沉浸式翻译插件(可选)

上面的汉化插件只会汉化Hugging Face的菜单,如果要再对内容做翻译,则可以使用沉浸式翻译插件,官网地址:沉浸式翻译 - 双语对照网页翻译插件 | PDF翻译 | 视频字幕翻译

这里使用插件的AI翻译需要开通会员,可以DeepL的逆向工程,地址:Start Your DeepLX Instance | DeepLX,里面详细介绍了如何快速搭建API接口,将沉浸式翻译转到自己搭建接口即可免费使用

### Hugging Face 使用教程 #### 安装 `huggingface_hub` 包 为了能够使用 Hugging Face 的命令行工具 (`huggingface-cli`),需要先安装 `huggingface_hub` 包。这可以通过 Python 的包管理器 pip 来完成: ```bash pip install huggingface_hub ``` 此操作允许访问一系列用于与 Hugging Face 平台交互的功能[^1]。 #### 登录到 Hugging Face Hub 对于首次使用者,在本地环境中配置认证信息是必要的。通过执行下面的命令可以启动登录流程,它支持手动输入令牌或利用环境变量传递的方式简化自动化脚本中的集成过程: ```bash huggingface-cli login # 或者使用环境变量方式 huggingface-cli login --token $HUGGINGFACE_TOKEN ``` 上述方法确保了后续所有 API 请求都将携带有效的身份验证凭证[^3]。 #### 创建新的模型仓库 一旦成功登录,就可以着手准备自己的项目空间了。创建一个新的远程 Git 存储库来托管即将发布的模型非常简单,只需调用特定命令即可: ```bash create_repo my-model-repo-name ``` 这里,“my-model-repo-name”应替换为实际想要使用的唯一名称。这一动作会在用户的个人主页下建立对应的公开/私有版本控制区域[^4]。 #### 利用 Accelerate 进行高效开发 针对那些寻求加速分布式训练体验的人群来说,Accelerate 库提供了一种便捷途径。特别是当目标框架围绕着 PyTorch 和 TensorFlow 构建时更为适用。借助于其简洁易懂的设计理念,即使是初学者也能迅速掌握如何部署复杂的多节点作业[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值