Caffe-python interface 学习-网络定义详解

本文详细介绍了如何使用Caffe的Python接口来定义和操作神经网络,包括数据层、卷积层、激活层、dropout层、池化层、全连接层、SoftmaxWithLoss层和Accuracy层的使用。通过示例代码,展示了如何构建网络并生成prototxt文件,强调了各层之间的输入输出关系和参数设置的重要性。
摘要由CSDN通过智能技术生成

Caffe-python interface 学习-网络定义详解

参考网址:http://yanjoy.win/2017/01/06/pycaffe-interface1/

之前用的都是caffe的命令行接口,单独训练还行,不过看里面层的参数、数据还是很麻烦的。特别是这周实验遇到了比较大的问题,命令行无能为力,还是要好好看看python接口。

python 接口编译

这个一般在编译caffe时都会顺带完成,如果遇到ImportError: No module named caffe,可能是没有编译或者没有添加到路径。
编译可以在根目录下make pycaffe,目录是/caffe/python。将caffe/python的路径添加到用户环境变量~/.bashrc中:

 

1

 

export PYTHONPATH=/home/xxx/caffe/python

 

然后输入sudo ldconfig确认。当然我的服务器没有管理员权限,这时可以每次手动添加目录,见下文。
编译时要在Makefile.config中修改有关路径,除此之外,

 

1

 

WITH_PYTHON_LAYER := 1

 

也是需要注意的一点,这在f-rcnn中也提到过。

python 接口调用

 

1

2

3

4

5

6

 

import sys

sys.path.append('/home/xxx/caffe/python')#手动添加路径

import caffe

import numpy as np

from skimage import io

import matplotlib.pyplot as plt

以上可以直接复制好,每次都加上。

运行模式小设置

 

1

2

3

 

caffe.set_mode_cpu()#设置为cpu模式

caffe.set_device(0)#gpu号

caffe.set_mode_gpu()#gpu模式

定义网络

下面是一个例子:

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

 

# -*- coding: utf-8 -*-

"""

Spyder Editor

"""

from caffe import layers as L,params as P,to_proto

path='/home/xxx/data/' #保存数据和配置文件的路径

train_lmdb=path+'train_db' #训练数据LMDB文件的位置

val_lmdb=path+'val_db' #验证数据LMDB文件的位置

mean_file=path+'mean.binaryproto' #均值文件的位置

train_proto=path+'train.prototxt' #生成的训练配置文件保存的位置

val_proto=path+'val.prototxt' #生成的验证配置文件保存的位置

#编写一个函数,用于生成网络

def create_net(lmdb,batch_size,include_acc=False):

#创建第一层:数据层。向上传递两类数据:图片数据和对应的标签

data, label = L.Data(source=lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=2,

transform_param=dict(crop_size=40,mean_file=mean_file,mirror=True))

#创建第二屋:卷积层

conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=16, pad=2,weight_filler=dict(type='xavier'))

#创建激活函数层

relu1=L.ReLU(conv1, in_place=True)

#创建池化层

pool1=L.Pooling(relu1, pool=P.Pooling.MAX, kernel_size=3, stride=2)

conv2=L.Convolution(pool1, kernel_size=3, stride=1,num_output=32, pad=1,weight_filler=dict(type='xavier'))

relu2=L.ReLU(conv2, in_place=True)

pool2=L.Pooling(relu2, pool=P.Pooling.MAX, kernel_size=3, stride=2)

#创建一个全连接层

fc3=L.InnerProduct(pool2, num_output=1024,weight_filler=dict(type='xavier'))

relu3=L.ReLU(fc3, in_place=True)

#创建一个dropout层

drop3 = L.Dropout(relu3, in_place=True)

fc4 = L.InnerProduct(drop3, num_output=10,weight_filler=dict(type='xavier'))

#创建一个softmax层

loss = L.SoftmaxWithLoss(fc4, label)

if include_acc: #在训练阶段,不需要accuracy层,但是在验证阶段,是需要的

acc = L.Accuracy(fc4, label)

return to_proto(loss, acc)

else:

return to_proto(loss)

def write_net():

#将以上的设置写入到prototxt文件

with open(train_proto, 'w') as f:

f.write(str(create_net(train_lmdb,batch_size=64)))

#写入配置文件

with open(val_proto, 'w') as f:

f.write(str(create_net(val_lmdb,batch_size=32, include_acc=True)))

if __name__ == '__main__':

write_net()

 

上面的代码,我们一开始就import了两个包,一个是layers,另一个是params。layers里面包含了Caffe所以内置的层(比如卷积,ReLU等),而params则包含了各种枚举值。
网上很少找到函数详解,自己凭着理解总结一下吧:

数据层

 

1

2

3

4

5

6

7

8

9

10

 

data,label=L.Data(

source=lmdb, #数据源,训练数据LMDB文件的位置

backend=P.Data.LMDB, #数据类型,本文是lmdb

batch_size=batch_size, #batch大小

ntop=2, #输出数量,本文是data和label,所以是2

transform_param=dict(crop_size=40, #crop大小

mean_file=mean_file, #均值文件

mirror=True #镜像操作

)

)

卷积层

 

1

2

3

4

5

6

7

8

 

conv1=L.Convolution(

data, #数据流入(即从数据层得到的data)

kernel_size=5, #卷积核大小

stride=1, #步长

num_output=16, #输出

pad=2, #填零

weight_filler=dict(type='xavier') #权重初始化方式'xavier'

)

激活层、dropout层

 

1

2

3

4

5

6

7

8

 

relu1=L.ReLU(

conv1, #数据流入(即从卷积层得到的conv1)

in_place=True #in_place ,就地运算,节省存储开销

)

drop3=L.Dropout(

relu3, #数据流入(即从激活层得到的relu3)

in_place=True #in_place ,就地运算,节省存储开销

)

池化层

 

1

2

3

4

5

6

 

pool1=L.Pooling(

relu1, #数据流入(即从激活层得到的relu1)

pool=P.Pooling.MAX, #池化方式:最大池化

kernel_size=3, #池化核大小

stride=2 #步长

)

全连接层

 

1

2

3

4

5

 

fc3=L.InnerProduct(

pool2, #数据流入(即从池化层得到的pool2)

num_output=1024, #全连接输出数目

weight_filler=dict(type='xavier') #权重初始化方式'xavier'

)

SoftmaxWithLoss层

 

1

2

3

4

 

loss = L.SoftmaxWithLoss(

fc4, #数据流入(即从全连接层得到的fc4)

label #数据流入(即从数据层得到的label)

)

Accuracy层

 

1

2

3

4

5

6

7

8

 

if include_acc: #在训练阶段,不需要accuracy层,但是在验证阶段,是需要的

acc = L.Accuracy(

fc4,

label

)

return to_proto(loss, acc)

else:

return to_proto(loss)

总结

上面那种是一层一层往上累加的,最后返回了最后一层。
当然如果直接建一个caffe.NetSpec(),会有一个整体的把握:

 

1

2

3

4

5

6

 

def mynet(lmdb, batch_size):

n = caffe.NetSpec()

###################

n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)

###################

return n.to_proto()

 

方法的参数中的lmdb是指Caffe支持的数据库的一种,叫lmdb,我们传入数据库的路径即可。而n=caffe.NetSpec()是获取Caffe的一个Net,我们只需不断的填充这个n,最后面把n输出到文件。
在填充的时候要记得加上n.
各层的具体参数可以参考caffe.proto
总的来说,这种方式生成prototxt要简单一些,代码量比直接写要小,而且层的输入输出清晰:输入是第一个参数,输出是返回值。不过也要注意不同参数的数据格式,如dict(type='xavier')

caffe的python接口学习(1):生成配置文件
Deep learning tutorial on Caffe technology : basic commands, Python and C++ code.
Caffe学习4-利用caffe.proto自定义自己的网络

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值