微带传输线 - 本征模 - Beta相位常数,色散图, 相速度, Pierce耦合阻抗_CST软件

本期看一个自带案例,微带线的本征模分析。

                           

仿真频率范围是0-15GHz,求解器为E。

只计算一个基础模。

背景距离在Y+的空气方向上加大。

边界是X与Y都是电边界,中心对称磁边界,Z传播方向为周期边界,符合基础模的电磁场分布。

单元长度为d=0.004m

周期边界相位参数化:phase

 

这个案例预先运行了这个宏,这个宏必须是phase参数扫描用,并且phase不可为零(等下解释为什么):

所以参数扫描界面可以看见“userdefined”标志。

如果没有此步骤,参数扫描仿真结束后,只有基础的模式结果:

通过此步骤,参数扫描仿真结束后,结果出会有更多的慢波结构相关的结果:

“userdefined”这个代码是根据三维的本征模电场,提取一系列的数据。比如需要波长:

所以扫描角不可为零。

那么扫描角到底是在做什么?根据帮助文档,“phase“是两个周期边界的电场相位差:

 

分析结果:

1.    Phase velovity相位速度:

相位速度是对光速归一化,也就是说,这里看到0.38左右的值,表示波相位以0.38倍的光速传播,所以叫慢波结构。相速度快过光速就是快波结构。

单位是rad/s/(rad/m)=m/s.

2.    Dispersion Diagram色散图

这个结果是传播常数beta的色散曲线,单位是rad/m:

其实把频率换成角频率omega,beta对归一化,就能得到传说中的色散曲线。很多用户将这些数据导出再画线,本期就给大家展示如何在CST中完成。先拿omega:

后处理,起个好名,evaluate,应用于全部参数扫描的结果:

当然先忽略这时的横坐标名称,以及不是频率了:

再对beta归一(单元长度为d=0.004m):

将XY互换:

 

 

新建1D文件夹,将最后的结果Mode1拷贝进入。右键点击曲线属性,设置横纵坐标名称。

 

拓展一下X轴:

导入空气线:

 

计算方法(归一化):

1*pi/0.004*2.998e8/1e9=235.46

 

 曲线放在一起:

 

其实这个图也是表示相速度和光速的关系,这里看到红线较低,处于慢波区间。感兴趣的用户可以继续验证,看红线除以绿线是不是等于phase velocity。

 

3.    Group velovity群速度:

 

4.   Pierce 耦合阻抗,功率流,电场:

 

电场是总场E(abs),包含各次空间谐波。功率流P是1焦耳乘以群速度。

 

小结:

1.    相位扫描需要参数“phase”,所以强烈建议开始时用模板,省事很多。

2.    Phase不要为零。

3.    可在CST中获取文献中常见的V型色散图,用于研究能级禁带超材料等等。

 

【推荐内容】

国产某GPU卡在CST软件加速中的性能评估

CST软件中滤波器中外部耦合偏小怎么办

仿真初学者模型不收敛,问题出在哪?

### CST软件中的色散曲线计算方法 在CST Studio Suite中,色散曲线用于描述波导或其他传输线结构中不同式的传播特性。为了计算这些色散关系,在项目浏览器中创建一个新的“频域求解器”(FDS) 或者 “本求解器” (Eigensolver),并定义所需的几何形状和材料属性[^1]。 对于具体的色散曲线分析: - **设定边界条件**:确保选择了合适的端口类型以及激励源位置来激发特定式。 - **扫频设置**:通过频率扫描范围内的多个点来进行拟,从而获得各个离散频率下的有效折射率或速度数据。 - **后处理提取结果**:完成仿运行之后,可以利用内置工具绘制出所需的结果表形式展示出来,如β-k等。 ```python # Python伪代码示例(实际操作需在GUI环境中) solver = project.createSolver('Frequency Domain') solver.setBoundaryConditions(...) solver.addExcitationSource(...) results = solver.runSweep(frequencies=[f_min, f_max], num_points=100) dispersion_curve = results.extractDispersionData() plot(dispersion_curve['frequency'], dispersion_curve['beta']) ``` ### CST软件中的耦合阻抗分析教程 耦合阻抗是评估两个电路元件之间电磁互作用强度的重要参数之一。在CST Microwave Studio 中执行此类分析时,主要依赖于近场探针法或者基于S参数矩阵转换得到Z参数的方法[^2]。 具体步骤如下所示: - 构建待测系统的三维型,并合理划分网格单元以提高数值准确性; - 定义输入/输出端口的位置及其关联的参考平面; - 进行全波仿实验获取完整的S参数集; - 利用内嵌函数将上述所得的数据转化为对应的阻抗表示形式,进而得出目标区域内的互感系数Lmn及自感量Li(i=m,n)。 ```matlab % MATLAB伪代码示例(实际操作需在GUI环境中) setupModel(); % 建立物理场景 definePorts(); % 设置端口信息 [s_params, freqs] = runSimulation(); [Z_matrix] = sparameters_to_impedance(s_params); coupling_impedances = calculateCouplings(Z_matrix); display(coupling_impedances); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值