田口设计(正交设计)——参数设置方法

本文详细介绍田口设计的方法,包括如何通过正交表选择参数、控制噪音影响和提高实验稳定性。重点讲解了确定因子数量、设计正交表、实施实验并计算信噪比,以及最终选择最佳参数值的过程。同时提及了相关参考文献和实际应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

田口设计——参数设置方法

参考文献:G. Tachugi, System of Experimental Design:Engineering Methods to Optimize Quality and Minimize Costs, Kraus International Publications, New York, 1987.

田口设计的目的是选出使实验结果稳定,波动性小的参数组合。利用正交表来挑选实验参数安排实验,通过较少的参数组合评估较多的影响实验结果的因素。静态田口实验影响实验结果的因子可以分为可控因子(参数)和噪音因子(随机误差)。通过调整可控因子(参数)的水平,来降低噪音对实验结果的影响。使用信噪比评价实验结果的稳定性,值越大,品质越好,根据每个因子(参数)的最大信噪比,选出每个因子的最佳水平(参数值)。
设计步骤:
1.确定实验的可控因子:因子个数(参数个数)、因子水平数(参数可选的值)。论文中选择了5个因子,每个因子的水平数是4。
如下图所示:
在这里插入图片描述
2.根据“均匀分散、整齐可比”的特点设计正交表。实验次数N=C*S-C+1(C为因子个数,S为水平数)。根据每一列都每个水平出现次数相等和任意两列出现的序对次数相等的原则设计正交表。设计如下。
其中Trail表示实验编号,P1表示第一个参数Population size,P2-P5分别表示其他参数,y1-y3表示第1-3次实验(相同参数下的多次实验)的结果。S/N表示信噪比。
在这里插入图片描述
正交表也可以网上直接生成
在这里插入图片描述

3.根据正交表进行实验,计算出每次实验的信噪比大小(不可控因素,计算每个因子的每个水平的信噪比,选出使信噪比最大的值,作为参数的值。

在这里插入图片描述
4.由上正交表可知:Population size在Trail1-4上是level1的实验。Population size在Level 1的信噪比的值:(101.4143+101.4145+101.4126+101.4143)/4=101.4137类似的,可以计算得到下表:
在这里插入图片描述
表中标a为信噪比最大的,也是最后选中的。

另外这是我受约束的多目标优化问题优秀论文及总结目录贝叶斯优化优秀论文总结目录,里面有很多优秀论文解读和分享,快来看看吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值