网络安全与海洋生物多样性保护:深度学习的双重应用
1. 分布式拒绝服务攻击防御
1.1 背景与挑战
在当今数字化时代,网络安全面临着日益严峻的挑战,分布式拒绝服务(DDoS)攻击就是其中之一。这种攻击会严重威胁计算机系统中数据的安全性和可用性。为了应对此类威胁,传统的入侵检测方法,如基于异常的检测和基于签名的检测,被广泛应用。基于异常的检测通过持续观察、收集和分析网络数据包,将其分类为恶意或良性;基于签名的检测则利用从以往攻击信息构建的签名数据库。
然而,随着互联网的发展,网络犯罪呈指数级增长,传统方法逐渐显现出局限性。机器学习(ML)作为一种新的技术,虽然能够让计算机在无需明确训练的情况下学习,但也存在一些问题。例如,它可能会误将恶意数据包分类为无害的,或者将异常数据包错误地判定为安全的。此外,网络中大量的数据流动使得实时分析数据包变得困难,这可能会影响计算机系统的整体性能。
1.2 深度学习解决方案
为了克服机器学习的局限性,人工智能专家开始研究深度学习(DL)方法。深度学习是机器学习的一个子领域,其算法性能会随着数据量的增加而提升,而机器学习算法的性能则会随着时间趋于稳定。
1.3 研究方法
为了检测新的攻击,许多基于卷积神经网络(CNN)的深度学习算法被提出。但目前这些算法大多只能在训练和测试数据上进行检测,缺乏实时的图形用户界面(GUI)来对攻击进行分类。
为了解决这个问题,研究人员开发了一种基于前馈神经网络的新GUI工具——Dique。该工具能够捕获实时流量并对攻击进行分类。为了训练深度神经网络,研究人员设计了一个多层CNN,其中包含密集(DENSE)和丢弃(DROPOUT)层
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   41
					41
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            