应用转移的黑盒攻击(Transferability in Machine Learning: from Phenomena toBlack-Box Attacks using Adversarial)

一、简介

这篇文章是2016年的,很有年代感

其提出的方法几乎是最早一批的黑盒攻击方式,很有味道值得一读

本文讲述了面对黑盒(Black-Box)模型时,通过构造替代(substitute)模型,通过转移(transfer)手段对受害者(victim)模型(也就是要被攻击的模型)进行攻击

二、文章特色

2.1名词解释

文章营养浓缩成精华,我们先来解释几个概念

名词 概念
白盒模型 模型参数均可知的模型
黑盒模型 攻击者无法访问模型,甚至不知道softmax层的输出概率,只能知道模型输出类别
受害者模型 攻击方需要攻击的模型
替代模型 受害者模型的替身,是攻击者构建的,和受害者模型相似,对于攻击者来说是白盒模型
转移 攻击者通过攻击替代模型,习得的攻击方法一定程度对受害者模型有效

2.2对比模型

文章对比了五大机器学习模型:DNN(深度神经网络),LR(逻辑回归),SVM(支持向量机),DT(决策树),KNN(k近邻)

三大特性分别为:可微分,线性,延迟预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值