应用转移的黑盒攻击(Transferability in Machine Learning: from Phenomena toBlack-Box Attacks using Adversarial)

一、简介

这篇文章是2016年的,很有年代感

其提出的方法几乎是最早一批的黑盒攻击方式,很有味道值得一读

本文讲述了面对黑盒(Black-Box)模型时,通过构造替代(substitute)模型,通过转移(transfer)手段对受害者(victim)模型(也就是要被攻击的模型)进行攻击

二、文章特色

2.1名词解释

文章营养浓缩成精华,我们先来解释几个概念

名词概念
白盒模型模型参数均可知的模型
黑盒模型攻击者无法访问模型,甚至不知道softmax层的输出概率,只能知道模型输出类别
受害者模型攻击方需要攻击的模型
替代模型受害者模型的替身,是攻击者构建的,和受害者模型相似,对于攻击者来说是白盒模型
转移攻击者通过攻击替代模型,习得的攻击方法一定程度对受害者模型有效

2.2对比模型

文章对比了五大机器学习模型:DNN(深度神经网络),LR(逻辑回归),SVM(支持向量机),DT(决策树),KNN(k近邻)

三大特性分别为:可微分,线性,延迟预测

机器学习模型特性

 五大模型各有各色,不过基于现实,我们主要关注深度神经网络以及逻辑回归

2.3替代模型

替代模型是用来作为受害者模型的替身的,所以攻击者期望替代模型可以尽可能的代表受害者模型,也就是说,期望二者有更高的相似性

因此,作者使用了一些方法来训练替代模型:

j个数据(x_i,y_i)^j,数据集\left \{ (x_i,y_i)^j \right \}^{(j=1...N)},受害者模型O(\cdot),受害者模型预测标签也就是O(x_i)

而替代模型的训练数据集则为\left \{ (x_i,O(x_i)^j \right \}^{(j=1...N)}

是的,替代模型并不是按照数据集的标签训练的,而是使用受害者模型的标签进行训练

这种训练方式可以使得替代模型逼近受害者模型,而非正确预测类别的分类器

2.3数据集

选择数据集也是有技巧的,我们上面说了,替代模型的训练数据集的标签是受害者模型预测标签O(x_i);相当于每有一个训练数据,便需要受害者模型输出一个标签,这被称之为对受害者模型进行查询(query)

查询多了,就容易被受害者发现(笔者这么理解的);同时我们希望替代模型训练数据尽可能多

满足两者的,便是只使用部分数据进行查询,并进行数据增强

文章对于数据增强提出了三大创新,解释了:增强谁,怎么增强的问题

2.3.1增强谁

文章使用水库采样(RS)挑选需要被增强的数据集 

具体来说,对于有N个数据的数据集S_{\rho-1 },选定参数k

直接增强前k个样本,对于剩余N-k个样本,对于第i(i\geq k)个样本,其有\frac{k}{i}的几率被增强

增强后的样本和原样本取并集生成新数据集S_{\rho }

水库采样可以使得S_{\rho-1 }中的每一个样本都有\frac{1}{|S_{\rho-1 }|}的几率被增强

𝑆𝜌−1S_(ρ-1),

水库采样流程图

2.3.2如何增强

使用水库采样挑选出来的样本,文章使用了基于雅可比矩阵(Jacobian-based的数据增强方法:

S_{\rho }=\left \{ x+\lambda_\rho \cdot sgn(J_f[O(x)]:x\in S_{\rho -1} )\right \} \cup S_{\rho -1 }

其中J_f是雅可比矩阵,\lambda_\rho是步长,其表达式为\lambda_\rho=\lambda \cdot (-1)^{[ \frac{\rho}{\tau} ]};这种步长随着周期变化的方法称为周期步长(PSS)

使用这两种方法进行的数据增强有一定的优越性,在后文实验部分有所论证

三、实验

实验部分我们挑三个讲,分别是转移的有效性、替代模型的选取以及攻击的有效性

在五种模型中,我们主要关注DNN、LR

3.1转移的有效性

当受害者模型和替代模型的类别相同时(比如都属于DNN,ABCDE分别为5个DNN模型

观察混淆矩阵,其数值为攻击的成功率

对角线处受害者模型和替代模型相同,想当于白盒攻击;而非对角线处二者不同,为黑盒攻击

白盒攻击显然优于黑盒,但同时两者的黑盒攻击都取得了不错的效果(LR更甚

DNN的攻击
LR的攻击

3.2替代模型选取

当时受害者模型和替代模型不一定处于同一类别模型时(比如受害者是DNN,而替代模型是LR

旨在探究不同模型之间的拟合能力

实验测试两种替代模型,分别为DNN、LR,测试替代模型对受害者模型的拟合能力

从实验结果来看,DNN、LR对非同一类别模型也有不错的拟合能力,除了决策树

作者推测可能是决策树不可微分的原因

DNN作为替代模型
LR作为替代模型

3.3攻击有效性 

本次实验选取了亚马逊和谷歌作为受害者模型

作者得出两个结论:

  1. PSS+RS可以减少查询次数
  2. LR比DNN作为替代模型更优
亚马逊(上),谷歌(下)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值