pytorch 从头开始faster-rcnn(二):数据集处理

本文介绍了如何在PyTorch中从头开始处理Faster R-CNN目标检测数据集。内容包括加载图像和XML标签,特别是处理多个bounding box,将图像转换为PyTorch所需的固定数据格式,并封装成数据读取类,最后配置迭代器的batch_size。
摘要由CSDN通过智能技术生成

一个神经网络的开始首先是要对数据进行处理。

目标检测图像分为两个部分,一个是原始图像,另外一个是标志的xml文件。

由于pytorch数据使用迭代器加载,所以处理都是一张一张图像的处理。

1.加载图像和标签。

标签包括boundingbox和其名称标签,由于boundingbox和其标签有多个,所有使用循环读取。返回图像及其标签。

    def get_example(self, i):
        """Returns the i-th example.

        Returns a color image and bounding boxes. The image is in CHW format.
        The returned image is RGB.

        Args:
            i (int): The index of the example.

        Returns:
            tuple of an image and bounding boxes

        """
        id_ = self.ids[i]
        anno = ET.parse(
            os.path.join(self.data_dir, 'Annotations', id_ + '.xml'))
        bbox = list()
        label = list()
        difficult = list()
        for obj in anno.findall('object'):
            # when in not using difficult split, and the object is
            # difficult, skipt it.
  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值