群论:李群(Lie Group)和几种经典李群

1. 简述李群的定义

群论讲解步骤:群→连续群→拓扑群→李群

李群是具有某种性质的拓扑群,一句话总结就是:

若群参数连续且无限阶可微的群称为李群。

用流形的语言描述就是:

李群简单地说就是具有群结构的微分流形

想了解李群的详细定义,需要先了解拓扑、流形、拓扑流形、微分流形的定义,目前暂时不细细展开,后面再谈。所以这章主要介绍部分经典李群

2. 几种经典李群

例1 GL(n)

一般线性(general lineaer)群,又称矩阵群,指对n维矩阵做线性变换

g(a_{1,1},a_{1,2},...,a_{n,n})=[a_{i,j}|i,j=1,2,...,n]

n维矩阵的GL群,GL(n)的参数量是n^2个。

例2 U(1)

 所有单位复数构成的集合是一个李群,即

U(1)=\{g(\theta)=e^{i\theta}\}

U(1)群就是前面提到的经典的复数旋转群(或二维旋转群)

例3 SO(2)

S指Special,即行列式为1;O指orthogonal,即标准正交的;2指维度为2(不是指参数个数)。

g(\theta):连续,无限阶可微,\{g(\theta)|\theta\in\mathbb{R}\}

SO(2)群描述二维转动,所以又叫(定)轴转动群。

例4 SO(3)

SO(3)描述三维转动,需要三个角度参数,其中两个角度参数描述旋转轴,剩下一个描述旋转角度。

例5 SU(2)

U指unitary,单位或归一,指矩阵乘以自身共轭转置为单位矩阵。

SU(2)由三个参数表示,具体为:

其意义我们将在后面和四元数一起讲 

结论是:SO(2)和U(1)等价,SO(3)和SU(2)等价

李群的一本书,是扫描版,书的质量不错。 This book is intended for a one year graduate course on Lie groups and Lie algebras. The author proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts)and provides a carefully chosen range of material to give the student the bigger picture. For compact Lie groups, the Peter-Weyl theorem, conjugacy of maximal tori (two proofs), Weyl character formula and more are covered. The book continues with the study of complex analytic groups, then general noncompact Lie groups, including the Coxeter presentation of the Weyl group, the Iwasawa and Bruhat decompositions, Cartan decomposition, symmetric spaces, Cayley transforms, relative root systems, Satake diagrams, extended Dynkin diagrams and a survey of the ways Lie groups may be embedded in one another. The book culminates in a "topics" section giving depth to the student's understanding of representation theory, taking the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as a unifying theme, with many applications in diverse areas such as random matrix theory, minors of Toeplitz matrices, symmetric algebra decompositions, Gelfand pairs, Hecke algebras, representations of finite general linear groups and the cohomology of Grassmannians and flag varieties.   Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997)and Algebraic Geometry (World Scientific 1998).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值