旋转矩阵、变换矩阵,李群(Lie Group)、李代数(Lie Algebra)及扰动模型

0 前言

为什么需要李群&李代数?

  • 在处理空间变换相关优化问题时,变换矩阵对于加法计算不封闭(任意两个变换矩阵相加后不是一个变换矩阵),这主要是由于旋转矩阵对加法计算不封闭造成的。李代数的出现即可解决该问题,我们把空间变换矩阵( S E ( 3 ) SE(3) SE(3))映射到由向量组成的李代数( s e ( 3 ) se(3) se(3))空间中,就可以通过对向量(李代数 s e ( 3 ) se(3) se(3))求导来间接实现对变换矩阵的求导,从而用来解决一些空间变换相关的优化问题。

1 李群(Lie Group)

1.1 群(Group)的定义

群是一种集合加上一种运算的代数结构。若集合 A ≠ ∅ A\not=\varnothing A=,在 A A A上的二元运算为 ⋅ \cdot ,则群可以记作 G = ( A , ⋅ ) G=(A,\cdot) G=(A,)。群要求这个运算满足以下条件:

  • 封闭性 ∀ a , b ∈ A , a ⋅ b ∈ A \forall a,b \in A, a \cdot b \in A a,bA,abA
  • 结合律 ∀ a , b , c ∈ A , ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) \forall a,b,c \in A, (a \cdot b) \cdot c = a \cdot (b \cdot c) a,b,cA,(ab)c=a(bc)
  • 幺元/单位元 ∃ e ∈ A ,    s . t .    ∀ a ∈ A , e ⋅ a = a ⋅ e = a \exist e \in A, \ \ s.t. \ \ \forall a \in A, e \cdot a = a \cdot e = a eA,  s.t.  aA,ea=ae=a
  • 逆元 ∀ a ∈ A , ∃ a − 1 ∈ A ,    s . t .    a ⋅ a − 1 = e \forall a \in A, \exist a^{-1} \in A, \ \ s.t. \ \ a \cdot a^{-1}=e aA,a1A,  s.t.  aa1=e

1.2 一些特殊的群 - S O ( 3 ) & S E ( 3 ) SO(3) \& SE(3) SO(3)&SE(3)

(1)旋转矩阵 - 特殊正交群 S O ( n ) SO(n) SO(n)

旋转矩阵(定义为 R R R)描述了旋转前后同一个向量的坐标变换关系。旋转矩阵是一个行列式为1的正交矩阵,反之,行列式为1的正交矩阵也是一个旋转矩阵。我们把旋转矩阵的集合称为特殊正交群(Special Orthogonal Group),定义为;

S O ( n ) = { R ∈ R n × n ∣ R R T = I , d e t ( R ) = 1 } (1-1) SO(n) = \{ R \in \mathbb{R}^{n \times n} | RR^T=I, det(R)=1 \} \tag{1-1} SO(n)={RRn×nRRT=I,det(R)=1}(1-1)

旋转矩阵还有一些正交矩阵的特殊性质,如 R − 1 = R T R^{-1}=R^T R1=RT等,旋转矩阵的逆或转置描述了一个相反的旋转。

(2)变换矩阵 - 特殊欧式群 S E ( n ) SE(n) SE(n)

在欧式变换中,变换由一个旋转矩阵 R R R和平移向量 t t t来描述,可以把它们组合成一个矩阵,使整个变换关系变成一个线性关系。我们将组合后的矩阵记为 T T T T T T被称为变换矩阵(Transform Matrix),表示为:

T = [ R t 0 T 1 ] (1-2) T= \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} \tag{1-2} T=[R0Tt1](1-2)

所有变换矩阵 T T T的集合被称为特殊欧式群(Special Euclidean Group),定义为:

S E ( 3 ) = { T = [ R t 0 T 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , t ∈ R 3 } (1-3) SE(3)=\{ T= \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4} | R \in SO(3), t \in \mathbb{R}^3 \} \tag{1-3} SE(3)={T=[R0Tt1]R4×4RSO(3),tR3}(1-3)

变换矩阵 T T T的逆可以表示一个反向的变换:

T − 1 = [ R T − R T t 0 T 1 ] (1-4) T^{-1} = \begin{bmatrix} R^T & -R^Tt \\ 0^T & 1 \end{bmatrix} \tag{1-4} T1=[RT0TRTt1](1-4)

1.3 李群(Lie Group)

李群是指具有连续(光滑)性质的群,是群也是流形。刚体在空间中的运动是连续的,用于描述该运动的 S O ( 3 ) SO(3) SO(3) S E ( 3 ) SE(3) SE(3)都是李群;整数群 Z \Z Z由于没有连续性质(是离散的),因此不是李群。

2 李代数(Lie Algebra)

2.1 基本定义

李代数是李群单位元处的正切空间,描述了李群的局部性质。每个李群都有对应的李代数,通常用小写的字母表示与李群相对应的李代数,如李群 S O ( 3 ) SO(3) SO(3)对应的李代数为 s o ( 3 ) so(3) so(3)

李代数由一个集合 V \mathbb{V} V、一个数域 F \mathbb{F} F和一个二元运算 [ , ] [,] [,](称为李括号)组成,如果它们满足以下性质,则称 ( V , F , [ , ] ) (\mathbb{V},\mathbb{F},[,]) (V,F,[,])为一个李代数,记作 g \mathbb{g} g

  • 封闭性: ∀ X , Y ∈ V , [ X , Y ] ∈ V \forall X,Y \in \mathbb{V}, [X,Y] \in \mathbb{V} X,YV,[X,Y]V
  • 双线性: ∀ X , Y , Z ∈ V , a , b ∈ F \forall X,Y,Z \in \mathbb{V}, a,b \in \mathbb{F} X,Y,ZV,a,bF,有:
    [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] [aX+bY,Z]=a[X,Z]+b[Y,Z], [Z,aX+bY]=a[Z,X]+b[Z,Y] [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y]
  • 自反性: ∀ X ∈ V , [ X , X ] = 0 \forall X \in \mathbb{V}, [X,X] = 0 XV,[X,X]=0
  • 雅可比等价: ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ Y , X ] ] + [ Y , [ Z , X ] ] = 0 \forall X,Y,Z \in \mathbb{V}, [X,[Y,Z]]+[Z,[Y,X]]+[Y,[Z,X]]=0 X,Y,ZV,[X,[Y,Z]]+[Z,[Y,X]]+[Y,[Z,X]]=0

例如,三维向量 R 3 \mathbb{R}^3 R3上定义的叉积 × \times × ∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ sin ⁡ θ |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta a ×b =a b sinθ)是一种李括号,因此 g = ( R 3 , R , × ) \mathbb{g}=(\mathbb{R}^3,\mathbb{R},\times) g=(R3,R,×)构成了一个李代数。

2.2 问题引入

下面由旋转矩阵推导其对应李代数。考虑任意旋转矩阵 R R R满足 R R T = I RR^T=I RRT=I,假设该旋转矩阵描述了空间中的连续运动(随时间 t t t变化),则有:

R ( t ) R ( t ) T = I (2-1) R(t)R(t)^T=I \tag{2-1} R(t)R(t)T=I(2-1)

等式两侧对时间求导可得:

R ˋ ( t ) R ( t ) T + R ( t ) R ˋ ( t ) T = 0 ⇒ R ˋ ( t ) R ( t ) T = − ( R ˋ ( t ) R ( t ) T ) T (2-2) \grave{R}(t)R(t)^T+R(t)\grave{R}(t)^T=0 \\ \Rightarrow \grave{R}(t)R(t)^T = -(\grave{R}(t)R(t)^T)^T \tag{2-2} Rˋ(t)R(t)T+R(t)Rˋ(t)T=0Rˋ(t)R(t)T=(Rˋ(t)R(t)T)T(2-2)

可以看出 R ˋ ( t ) R ( t ) T \grave{R}(t)R(t)^T Rˋ(t)R(t)T是一个反对称矩阵。在继续推导之前,我们先定义符号 ∧ \land 表示向量到反对称矩阵的运算符,反之符号 ∨ \lor 表示反对称矩阵到向量的运算符,例如:

a ∧ = A = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] , A ∨ = a (2-3) a^{\land} = A = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}, A^{\lor}=a \tag{2-3} a=A=0a3a2a30a1a2a10,A=a(2-3)

R ˋ ( t ) R ( t ) T \grave{R}(t)R(t)^T Rˋ(t)R(t)T可记作 ϕ ( t ) ∧ \phi(t)^{\land} ϕ(t),即:

R ˋ ( t ) R ( t ) T = ϕ ( t ) ∧ (2-4) \grave{R}(t)R(t)^T = \phi(t)^{\land} \tag{2-4} Rˋ(t)R(t)T=ϕ(t)(2-4)

等式(2-4)两侧同时右乘 R ( t ) R(t) R(t),有:

R ˋ ( t ) = ϕ ( t ) ∧ R ( t ) = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] R ( t ) (2-5) \grave{R}(t)=\phi(t)^{\land}R(t) = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} R(t) \tag{2-5} Rˋ(t)=ϕ(t)R(t)=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10R(t)(2-5)

因此,对 R ( t ) R(t) R(t)求导只需左乘一个 ϕ ∧ ( t ) \phi^{\land}(t) ϕ(t)即可。

假设初始值 t 0 = 0 , R ( 0 ) = I t_0=0,R(0)=I t0=0,R(0)=I,则 R ( t ) R(t) R(t)在0附近的一阶泰勒展开为:

R ˋ ( t 0 ) = ϕ ( t 0 ) ∧ R ( t 0 ) = ϕ ( t 0 ) ∧ R ( t ) ≈ R ( t 0 ) + R ˋ ( t 0 ) ( t − t 0 ) = I + ϕ ( t 0 ) ∧ ( t ) (2-6) \grave{R}(t_0)=\phi(t_0)^{\land}R(t_0)=\phi(t_0)^{\land} \\ R(t) \approx R(t_0)+\grave{R}(t_0)(t-t_0)=I+\phi(t_0)^{\land}(t) \tag{2-6} Rˋ(t0)=ϕ(t0)R(t0)=ϕ(t0)R(t)R(t0)+Rˋ(t0)(tt0)=I+ϕ(t0)(t)(2-6)

可以看出, ϕ \phi ϕ反映了 R R R的导数性质,所以称它在 S O ( 3 ) SO(3) SO(3)原点附近的正切空间(Tangent Space)上。在 t 0 t_0 t0附近,设 ϕ \phi ϕ保持为常数 ϕ ( t 0 ) = ϕ 0 \phi(t_0)=\phi_0 ϕ(t0)=ϕ0,则根据公式(2-5)有:

R ˋ ( t ) = ϕ 0 ∧ R ( t ) (2-7) \grave{R}(t)=\phi_0^{\land}R(t) \tag{2-7} Rˋ(t)=ϕ0R(t)(2-7)

上式是一个关于 R R R的形如 y ′ + a y = 0 y'+ay=0 y+ay=0的微分方程,且初始值 R ( 0 ) = I R(0)=I R(0)=I,则可以解得:

R ( t ) = e x p ( ϕ 0 ∧ t ) (2-8) R(t)=exp(\phi_0^{\land}t) \tag{2-8} R(t)=exp(ϕ0t)(2-8)

该式说明对于任意 t t t都能找到一个 R R R和一个 ϕ \phi ϕ的对应关系。换句话说,当我们知道某个时刻的 R R R时,存在一个向量 ϕ \phi ϕ,它们满足这个矩阵指数关系,该关系称为指数映射(Exponential Map)。这个 ϕ \phi ϕ就是与 S O ( 3 ) SO(3) SO(3)相对应的李代数 s o ( 3 ) so(3) so(3),它描述了 R R R在局部的导数关系。

2.3 s o ( 3 ) so(3) so(3)

S O ( 3 ) SO(3) SO(3)对应的李代数 s o ( 3 ) so(3) so(3)是定义在 R 3 \R^3 R3上的向量,记作 ϕ \phi ϕ,每个 ϕ \phi ϕ都可以生成一个反对称矩阵:

Φ = ϕ ∧ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ∈ R 3 × 3 (2-9) \Phi=\phi^{\land}= \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} \in \R ^{3\times3} \tag{2-9} Φ=ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10R3×3(2-9)

两个向量 ϕ 1 , ϕ 2 \phi_1,\phi_2 ϕ1,ϕ2的李括号为:

[ ϕ 1 , ϕ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ (2-10) [\phi_1,\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^{\lor} \tag{2-10} [ϕ1,ϕ2]=(Φ1Φ2Φ2Φ1)(2-10)

可以说 s o ( 3 ) so(3) so(3)的元素是3维向量或3维反对称矩阵,或者说 s o ( 3 ) so(3) so(3)是一个由三维向量组成的集合,且每个向量对应到一个反对称矩阵,可以表达旋转矩阵的导数。 s o ( 3 ) so(3) so(3)表示为:

s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 } (2-11) so(3)=\{ \phi \in \R^3, \Phi = \phi^{\land} \in \R^{3\times3} \} \tag{2-11} so(3)={ϕR3,Φ=ϕR3×3}(2-11)

s o ( 3 ) so(3) so(3) S O ( 3 ) SO(3) SO(3)的关系由指数映射给定:

R = e x p ( ϕ ∧ ) (2-12) R=exp(\phi^{\land}) \tag{2-12} R=exp(ϕ)(2-12)

2.4 s e ( 3 ) se(3) se(3)

S O ( 3 ) SO(3) SO(3) ~ s o ( 3 ) so(3) so(3)类似, S E ( 3 ) SE(3) SE(3)对应的李代数 s e ( 3 ) se(3) se(3)位于 R 6 \R^6 R6空间中,定义为:

s e ( 3 ) = { ξ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ξ ∧ = [ ϕ ∧ ρ 0 T 0 ] ∈ R 4 × 4 } (2-13) se(3)=\{ \xi = \begin{bmatrix} \rho \\ \phi \end{bmatrix} \in \R^6, \rho \in \R^3, \phi \in so(3), \xi^{\land}=\begin{bmatrix} \phi^{\land} & \rho \\ 0^T & 0 \end{bmatrix} \in \R^{4\times4} \} \tag{2-13} se(3)={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0Tρ0]R4×4}(2-13)

把每个 s e ( 3 ) se(3) se(3)元素记作 ξ \xi ξ,它是一个6维向量。前三维为平移,记作 ρ \rho ρ;后三维为旋转,记作 ϕ \phi ϕ,实际上是 s o ( 3 ) so(3) so(3)元素。注意,这里的 ∧ ^\land 符号表示将一个六维向量转换成四维矩阵,但这里不再表示反对称。

可以简单地把 s e ( 3 ) se(3) se(3)理解为“由一个平移加上一个 s o ( 3 ) so(3) so(3)元素构成的向量”(这里的 ρ \rho ρ不直接是平移)。 s e ( 3 ) se(3) se(3)也有类似于 s o ( 3 ) so(3) so(3)的李括号:

[ ξ 1 , ξ 2 ] = ( ξ 1 ∧ ξ 2 ∧ − ξ 2 ∧ ξ 1 ∧ ) ∨ (2-14) [\xi_1,\xi_2]=(\xi_1^{\land}\xi_2^{\land}-\xi_2^{\land}\xi_1^{\land})^{\lor} \tag{2-14} [ξ1,ξ2]=(ξ1ξ2ξ2ξ1)(2-14)

2.5 S O ( 3 ) SO(3) SO(3) S E ( 3 ) SE(3) SE(3)上的指数映射、对数映射

S O ( 3 ) / S E ( 3 ) SO(3)/SE(3) SO(3)/SE(3) s o ( 3 ) / s e ( 3 ) so(3)/se(3) so(3)/se(3)的映射被称为指数映射,也即罗德里格斯公式,都是通过泰勒公式来近似。有关指数映射的具体推导过程直接参考《视觉SLAM十四讲》。旋转矩阵的导数可以由旋转向量指定,指导着如何在旋转矩阵中进行微积分运算。

旋转的表示方法包括:旋转矩阵、旋转向量、欧拉角和四元数,而罗德里格斯变换就是表示从旋转向量到旋转矩阵的转换过程。

相应的对数映射可以看做时指数映射的反向映射,以书中一幅图来说明:

在这里插入图片描述

3 李代数求导与扰动模型

S O ( 3 ) SO(3) SO(3)上的(左)扰动模型求导如下:
在这里插入图片描述

参考

[1] 高翔.2017.视觉SLAM十四讲.电子工业出版社.400pp.
[2] 从零开始一起学习SLAM | 为啥需要李群与李代数?

### 回答1: 《Lie Groups, Lie Algebras, and Representations, 2nd ed.》是由Brian C. Hall撰写的数学教材,对于李群李代数以及表示论进行了系统而全面的讲解。 李群是一种特殊的数学对象,它既是一个群又具有连续流形的结构。在该书中,Hall从群论、微分几何和拓扑学的角度深入探讨了李群的性质和结构。他介绍了李群的定义、子群、同态和商群等基本概念,并研究了一些重要的例子,如一维平移群、旋转群和特殊线性群等。此外,该书还详细讨论了李群上的流形结构、李群之间的变换以及李群Lie代数等内容。 李代数是与李群相对应的对象,它是一个线性空间,并且配备了一种特殊的结构——李括号运算。Hall在书中系统地介绍了李代数的基本性质和结构。他讨论了李代数的定义、子代数、理想和商代数等概念,并着重研究了一些重要的例子,如矩阵李代数、广义线性李代数和黎曼流形上的李代数等。此外,该书还深入讨论了李代数上的表示论和根系理论,为进一步研究李群李代数奠定了坚实的基础。 在《Lie Groups, Lie Algebras, and Representations, 2nd ed.》中,Hall还对李群李代数的表示论进行了全面介绍。表示论研究了将李群李代数中的元素映射到线性变换的方法,并且可以帮助我们更好地理解和研究李群李代数的结构和性质。通过表示论,我们可以将李群李代数的抽象概念转化为具体的矩阵或算符形式,从而使其更易于计算和应用。在该书中,Hall详细介绍了有限维李群李代数的表示论,以及紧李群和半单李代数的表示论,并探讨了表示的等价性、直和分解以及不可约表示等重要问题。 综上所述,《Lie Groups, Lie Algebras, and Representations, 2nd ed.》是一本全面且系统的教材,通过对李群李代数和表示论的深入讲解,可以帮助读者建立起对这些数学对象的深刻理解,并为进一步研究相关领域提供了坚实的基础。 ### 回答2: 《Lie groups, Lie algebras, and Representations, 2nd ed》是一本关于李群李代数和表示论的经典教材。李群是一类拓扑群,它既是群也是光滑流形,具有良好的微分结构。李群的基本定义是它在乘法运算下是一个群,并且在光滑结构下是一个光滑流形。《Lie groups, Lie algebras, and Representations, 2nd ed》详细介绍了李群的相关知识,包括拓扑性质、流形结构、李群上的切空间等。 李代数是与李群相联系的代数结构。它是一个向量空间,配以一个二元运算——李括号,满足反对称性、结合性和雅克比恒等式。《Lie groups, Lie algebras, and Representations, 2nd ed》对李代数的定义、基本性质以及与李群之间的关系进行了深入讲解。它介绍了李代数Lie括号运算、李代数同态、子代数、陪集、理想等重要概念。 表示论是研究群作用的数学分支之一。它将抽象的群元素通过一定的变换,映射到线性空间上的可逆变换,从而研究群在线性空间上的表示。《Lie groups, Lie algebras, and Representations, 2nd ed》对表示论的基本概念、表示空间、表示的可约性、不可约表示等进行了系统讲解。它以李群李代数为基础,介绍了紧李群表示的特点、生成元、指数映射等重要内容。 总之,《Lie groups, Lie algebras, and Representations, 2nd ed》是一本涵盖了李群李代数和表示论的重要教材。它适合对这些领域感兴趣的学者、研究生和高年级的本科生阅读,可作为学习和研究李群李代数和表示论的宝贵参考资料。 ### 回答3: 《Lie Groups, Lie Algebras, and Representations, 2nd ed.》是一本由 Brian C. Hall 编写的数学教材,主要介绍了李群李代数和表示论的相关理论。 李群是指具有连续群结构的数学对象,它同时是具有光滑流形结构的集合。这本教材首先从李群的定义开始讲解,介绍了李群的基本概念、性质和例子。然后,它详细地讨论了李群之间的同态映射、群作用和李变换等重要内容。最后,教材还介绍了李群的子群、李群Lie代数和李群的全纯表示等进阶主题。 李代数是与李群相对应的一种代数结构,它是一个具有Lie括号运算的向量空间。《Lie Groups, Lie Algebras, and Representations, 2nd ed.》对于李代数的定义、结构和性质进行了全面而深入的介绍。书中还涉及了李代数的子代数、理想、陈表示和紧李代数等内容。此外,这本教材还介绍了李代数的准同态和李代数的表示等重要主题。 表示论是研究李群李代数的表示的数学分支。书中详细阐述了表示论的基本概念、定义和性质。它介绍了权重空间、单纯系统、完全约化以及基尔霍夫定理等重要内容。此外,教材还介绍了李群李代数的不可约表示和有限维复李代数的分类定理等进阶主题。 总而言之,《Lie Groups, Lie Algebras, and Representations, 2nd ed.》是一本完整而系统地介绍李群李代数和表示论的教材。它不仅涵盖了基本概念和性质,还包括了前沿的研究成果和应用。这本教材对于数学、物理、工程等领域的学生和研究人员都具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值