时空自回归模型(STAR)及 Stata 具体操作步骤


 

目录

一、引言

二、文献综述

三、理论原理

四、实证模型

五、稳健性检验

六、程序代码及解释

附录

数据预处理

生成时空权重矩阵


一、引言

时空自回归模型(Spatial-Temporal Autoregressive Model,简称 STAR)在分析具有时空特征的数据时具有重要的应用价值。它能够捕捉到变量在时间和空间维度上的相互关系和动态变化。近年来,该模型在经济学、地理学、环境科学等领域得到了广泛的应用。

二、文献综述

在经济学领域,Anselin(1988)率先将空间计量方法引入经济研究,为后续时空自回归模型的发展奠定了基础。此后,LeSage 和 Pace(2009)运用 STAR 模型深入探讨了区域经济增长的协同效应和扩散机制,发现经济发展水平相近的地区在经济增长上存在显著的正向空间溢出效应,并且这种效应在时间上具有一定的持续性。Elhorst(2010)通过构建时空自回归模型,研究了产业结构调整对区域经济增长的影响,结果表明产业结构的优化升级不仅对本地经济增长有促进作用,还通过空间关联对周边地区的经济增长产生影响。

在地理学领域,Getis 和 Ord(1992)利用空间自相关分析方法为研究地理现象的时空动态提供了重要思路。Tobler(1970)提出的地理学第一定律也为 STAR 模型的应用提供了理论支撑。此后,Fotheringham 等(2000)借助 STAR 模型探讨了城市扩张的时空模式,揭示了城市发展在空间上的集聚和扩散特征,以及时间上的阶段性变化。

在环境科学方面,Chowdhury 和 Moran(2013)通过 STAR 模型研究了大气污染物浓度的时空分布,发现污染源的分布和气象条件在空间和时间上共同影响着污染物的扩散和浓度变化。Wang 等(2015)应用 STAR 模型分析了水体污染的时空动态,揭示了河流、湖泊等水体的污染传播路径和时间变化趋势。

综上所述,时空自回归模型在多个学科领域都取得了丰富的研究成果,为深入理解各种时空现象的内在机制和规律提供了重要的方法和手段。

三、理论原理

时空自回归模型(STAR)是一种融合了时间序列自回归和空间相关性的统计模型。它的核心思想是假设变量在时间和空间上都存在一定的依赖关系。

在时间维度上,类似于传统的自回归模型(AR),当前时刻的变量值受到过去时刻变量值的影响。例如,如果我们研究的是某地区的气温变化,今天的气温可能与昨天、前天的气温存在线性关系。

在空间维度上,考虑到地理位置的邻近性或其他空间关系,一个位置的变量值可能受到其相邻位置变量值的影响。以城市房价为例,一个城市的房价可能会受到周边城市房价的影响。

四、实证模型

通过构建这样的实证模型,我们能够深入探究各个因素对犯罪率时空变化的影响机制,为制定有效的治安政策和城市规划提供科学依据。

五、稳健性检验

为了验证模型的稳健性,可以通过改变样本范围、空间

<think>好的,我现在需要帮用户修改他们的基准回归代码,以加入空间相关性分析。首先,我要理解用户的需求。他们之前用了reghdfe来做基准回归,现在需要将空间双重差分模型(SDID)整合进去,特别是使用地理距离空间矩阵,并生成包含DID项和W*DID项的结果,同时保持城市聚类的标准误。 首先,我得确认用户原来的代码结构。他们逐步添加控制变量,存储结果,然后用esttab导出表格。现在需要修改这部分代码,以包含空间模型。不过,Stata中处理空间模型通常需要不同的命令,比如xsmle或者spregress,而reghdfe可能不支持空间项。所以可能需要分两部分:基准回归和空间回归分开做,然后合并结果。 接下来,用户提到了式(1)和式(3),其中式(1)是基础DID,式(3)可能是动态效应或空间模型。需要确保代码中同时包含这两部分。原来的基准回归已经用了reghdfe,这可能对应式(1)。空间模型部分需要使用空间计量命令,比如xsmle,并包含DID和空间滞后的DID项(Wdid)。 用户还提到地理距离空间矩阵,需要先构建这个矩阵。可能需要使用spatwmat或其他相关命令生成空间权重矩阵W,并标准化。然后,在空间回归中引用这个矩阵。 另外,用户希望结果表格包含基准回归和空间回归的结果,可能需要将两个模型的结果存储起来,然后用esttab合并输出。不过,由于基准回归和空间回归可能使用不同的估计命令,直接合并可能会有问题,需要检查是否可行。 需要注意的地方:空间模型的命令可能与reghdfe不兼容,所以可能无法在同一个回归框架下运行。需要分开运行基准DID和空间DID,然后分别存储结果,最后合并到同一表格中。此外,空间模型需要预先安装相关包,比如xsmle,用户可能需要安装这些包。 最后,用户可能希望导出结果到RTF和Excel,需要调整esttab和export excel命令,确保包含所有需要的模型结果。同时,注意空间回归中的系数标签,比如Wdid,可能需要手动添加以便结果表更清晰。 总结步骤: 1. 基准DID模型保持原代码,对应式(1)。 2. 构建地理距离空间矩阵W。 3. 使用空间计量命令(如xsmle)运行空间DID模型,包含DID和Wdid项,对应式(3)。 4. 存储基准和空间模型的结果。 5. 合并结果到同一表格,调整格式和标签。 6. 导出到RTF和Excel。 需要检查xsmle是否支持聚类标准误,以及如何正确指定模型类型(如SDM)。可能还需要处理固定效应,确保与基准模型一致。最后,测试代码是否能够运行,并生成符合用户描述的结果。</think>以下是基于空间双重差分模型(SDID)的代码修改方案,整合地理距离矩阵与空间溢出效应分析: --- ### 一、基准回归部分(维持原结构) ```stata * 式(1)基础DID模型 reghdfe log_y treat, absorb(city_id year) cluster(city_id) est store table1a reghdfe log_y treat x22, absorb(year city_id) cluster(city_id) est store table1b reghdfe log_y treat x22 x8, absorb(year city_id) cluster(city_id) est store table1c reghdfe log_y treat x22 x8 x11, absorb(year city_id) cluster(city_id) est store table1d reghdfe log_y treat x22 x8 x15 x11, absorb(year city_id) cluster(city_id) est store table1e ``` --- ### 二、空间模型部分(新增) ```stata * 生成地理距离空间矩阵(需安装spatwmat) spatwmat using "city_coordinates.dta", name(W) band(0 100) standardize //假设城市坐标数据已标准化,限定相邻城市最大距离100km * 空间双重差分模型(式3) xsmle log_y treat W_treat x22 x8 x15 x11, wmat(W) model(sdm) /// type(ind) effects nolog cluster(city_id) robust /// durbin(treat) //关键设定:通过durbin()生成W*treat交互项 est store spatial_model * 效应分解 estat impact //显示直接效应和间接效应 ``` --- ### 三、结果联合输出 ```stata * 合并基准与空间模型结果 esttab table1* spatial_model using "table3.rtf", /// r2 obslast nogaps star(* 0.1 ** 0.05 *** 0.01) /// b(%6.3f) se(%6.3f) r2(%6.3f) compress replace /// mtitle("模型1" "模型2" "模型3" "模型4" "模型5" "空间SDID") /// order(treat W_treat) //突出显示核心解释变量 * 数据导出 export excel using "D:/spatial_data.xlsx", firstrow(variables) replace ``` --- ### 四、关键修改说明 1. **空间交互项生成**:通过`durbin(treat)`自动创建`W_treat`(即W×DID项) 2. **矩阵标准化**:`standardize`确保空间权重矩阵行标准化 3. **模型选择**:`model(sdm)`指定空间杜宾模型,同时包含解释变量及其空间滞后项 4. **效应识别**: - `treat`系数反映政策本地效应(直接效应) - `W_treat`系数反映空间溢出效应(间接效应) 5. **稳健性控制**:`robust`+`cluster(city_id)`双重稳健标准误 --- ### 五、注意事项 1. 需提前进行: - `ssc install xsmle, replace` 安装空间计量包 - 空间矩阵需要n×n矩阵文件(可通过`spatwmat`生成) 2. 建议添加: ```stata * 空间相关性检验 moransi log_y, weights(W) //检验被解释变量的空间自相关 ``` 3. 若需要动态空间效应,可添加`lag(1)`选项构建时空模型 修改后的代码框架同时保留了传统DID结果(表1系列)和空间模型结果(表3),满足原文方法论要求。建议通过`estat impact`命令进一步分解空间效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值