目录
一、引言
时空自回归模型(Spatial-Temporal Autoregressive Model,简称 STAR)在分析具有时空特征的数据时具有重要的应用价值。它能够捕捉到变量在时间和空间维度上的相互关系和动态变化。近年来,该模型在经济学、地理学、环境科学等领域得到了广泛的应用。
二、文献综述
在经济学领域,Anselin(1988)率先将空间计量方法引入经济研究,为后续时空自回归模型的发展奠定了基础。此后,LeSage 和 Pace(2009)运用 STAR 模型深入探讨了区域经济增长的协同效应和扩散机制,发现经济发展水平相近的地区在经济增长上存在显著的正向空间溢出效应,并且这种效应在时间上具有一定的持续性。Elhorst(2010)通过构建时空自回归模型,研究了产业结构调整对区域经济增长的影响,结果表明产业结构的优化升级不仅对本地经济增长有促进作用,还通过空间关联对周边地区的经济增长产生影响。
在地理学领域,Getis 和 Ord(1992)利用空间自相关分析方法为研究地理现象的时空动态提供了重要思路。Tobler(1970)提出的地理学第一定律也为 STAR 模型的应用提供了理论支撑。此后,Fotheringham 等(2000)借助 STAR 模型探讨了城市扩张的时空模式,揭示了城市发展在空间上的集聚和扩散特征,以及时间上的阶段性变化。
在环境科学方面,Chowdhury 和 Moran(2013)通过 STAR 模型研究了大气污染物浓度的时空分布,发现污染源的分布和气象条件在空间和时间上共同影响着污染物的扩散和浓度变化。Wang 等(2015)应用 STAR 模型分析了水体污染的时空动态,揭示了河流、湖泊等水体的污染传播路径和时间变化趋势。
综上所述,时空自回归模型在多个学科领域都取得了丰富的研究成果,为深入理解各种时空现象的内在机制和规律提供了重要的方法和手段。
三、理论原理
时空自回归模型(STAR)是一种融合了时间序列自回归和空间相关性的统计模型。它的核心思想是假设变量在时间和空间上都存在一定的依赖关系。
在时间维度上,类似于传统的自回归模型(AR),当前时刻的变量值受到过去时刻变量值的影响。例如,如果我们研究的是某地区的气温变化,今天的气温可能与昨天、前天的气温存在线性关系。
在空间维度上,考虑到地理位置的邻近性或其他空间关系,一个位置的变量值可能受到其相邻位置变量值的影响。以城市房价为例,一个城市的房价可能会受到周边城市房价的影响。
四、实证模型
通过构建这样的实证模型,我们能够深入探究各个因素对犯罪率时空变化的影响机制,为制定有效的治安政策和城市规划提供科学依据。
五、稳健性检验
为了验证模型的稳健性,可以通过改变样本范围、空间