目录
一、引言
合成控制法(Synthetic Control Method)是一种在政策评估中被广泛应用的方法,它能够通过构建一个合成的对照组来模拟处理组在没有受到政策干预时的情况,从而更准确地评估政策的效果。在本文中,我们将对合成控制法的理论原理进行阐述,并结合实际数据详细介绍在 Stata 中的具体操作步骤。
二、文献综述
合成控制法自诞生以来,在众多领域的政策评估中发挥了重要作用,并引起了学术界的广泛关注和深入研究。
在经济学领域,Abadie 和 Gardeazabal(2003)首次将合成控制法应用于评估恐怖主义活动对巴斯克地区经济的影响,为该方法的应用奠定了基础。此后,Abadie 等(2010)运用合成控制法评估了加州烟草控制计划对香烟消费的影响,发现该计划显著降低了香烟消费量。
在公共政策领域,Dube 等(2013)研究了最低工资政策对就业的影响,通过合成控制法发现适度提高最低工资对就业的负面影响较小。Kleven 和 Schultz(2014)则利用该方法评估了丹麦的育儿假政策对女性劳动力市场参与的影响,结果表明政策对女性就业产生了积极作用。
在环境政策方面,Greenstone 和 Gallagher(2008)评估了空气质量法规对制造业生产率的影响,发现严格的环境法规在长期内对经济的负面影响有限。
此外,合成控制法还被应用于教育政策、医疗政策、税收政策等多个领域的研究。例如,Jacobson 等(2011)评估了教育券计划对学生学业成绩的影响;Finkelstein 等(2012)研究了医疗保险改革对医疗服务利用和健康结果的影响;Slemrod 和 Bakija(2017)分析了税收政策对企业投资和经济增长的作用。
这些研